
KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2007
Cluj-Napoca (Romania), June 6–8, 2007, pp. 332–340

ARCHITECTING AND SPECIFYING A SOFTWARE
COMPONENT USING UML

DRAGOŞ PETRAŞCU(1) AND VLADIELA PETRAŞCU(2)

Abstract. The current paper experiments a component-based approach for
the LCD Wallet Travelling Clock case study. It proposes a component archi-
tecture and tries to formally specify its building blocks using UML and OCL.
Following this architecture and specifications, a JavaBeans implementation
has also been developed.

1. Introduction

Software components can be thought of as units of composition with contrac-
tually specified interfaces and explicit context dependencies only [6]. Ideally, they
should be black boxes, enabling third parties to reuse them without knowing the
details of their inner structure [4]. The interfaces they provide should be the only
access points. Therefore, specifying precisely these interfaces becomes of utmost
importance for both clients (which rely solely on that specification when accessing
a component’s services) and implementors (which are provided with an abstract
definition of a component’s internal structure).

At least three levels can be identified when specifying software components:
syntactic, semantic, and nonfunctional. Without disregarding its significance, the
last of these is not covered by our current paper. As for the syntactic specifica-
tion, it conforms to the following general model: A component implements a set of
named interfaces (also known as provided or incoming interfaces), while making
use of the services offered by another set of named interfaces (the required or out-
going interfaces). An interface consists of a set of named operations, each of which
has a number of named parameters (in, out, or inout). Types are associated to all
parameters. But even though it is the basis for client code type checking and com-
ponent interoperability verifications, this kind of specification is missing semantic
information. Nothing can be said about the effects of invoking one of the services
exposed by an interface, except what might be guessed from the name given to

2000 Mathematics Subject Classification. 68N30, 68Q60, 68N19.
Key words and phrases. component specification, UML, JavaBeans.

c©2007 Babeş-Bolyai University, Cluj-Napoca

332

ARCHITECTING AND SPECIFYING A SOFTWARE COMPONENT USING UML 333

that operation and the names and types of its parameters [4]. Nevertheless, this is
the only type of specification used with dedicated component-based approaches as
COM, CORBA or JavaBeans (COM and CORBA use different dialects of the IDL
for syntactic specification, while JavaBeans uses the Java programming language).

So as to overcome the above mentioned defficiencies, several techniques for
components semantic specification were provided in the literature. Most of them
propose a design by contract approach in order to formally describe the semantics
of the services offered by a software component. We have followed the general
guidelines given in [2], which introduces a process inspired, on its turn, by Catalysis
[5].

2. Component specification using UML

The approach proposed by [2] enhances the general syntactic model introduced
earlier with new concepts. The core one is that of a contract. Two types of con-
tracts can be distinguished when specifying software components: usage contracts
and realization contracts.

A usage contract is a run-time contract between an interface offered by a com-
ponent object and its clients. Each such contract is represented by an interface
specification that consists of the following:

• all the services that compose the interface with their signatures and
associated behavior;

• the interface’s information (state) model and any constraints (invariants)
on that model.

The information model associated to an interface is an abstraction of that part
of a component’s state that affects or may be affected by the execution of oper-
ations in the interface. It does not impose any implementation restrictions. It
is merely an abstraction that helps in specifying operations behavior. Each such
operation is considered as a fine-grained contract in its own right. Behavior is
described in terms of pre/post-condition pairs. A precondition is an assertion that
must be true before the operation is invoked. It is the client’s responsibility to
ensure that it holds prior to making the call. It is a predicate expressed in terms
of the input parameters and the state model. The postcondition is guaranteed
by the component’s implementor, after the execution finishes, provided that the
precondition was met. It is also a predicate, involving both input and output
parameters, as well as the state just before the invocation and just after.

A usage contract is represented by means of an Interface Specification Dia-
gram, with associated constraints. An Interface Specification Diagram is a usual
UML Class Diagram, just enriched with some specific stereotypes. It contains
the interface to specify and its information model. The interface (including the
signatures of its provided services) is figured as a classs having the <<interface

334 DRAGOŞ PETRAŞCU(1) AND VLADIELA PETRAŞCU(2)

type>> stereotype. The information model is represented by a collection of asso-
ciated types (classes), at least one of them having a composition relationship with
the interface. The types that are part of the information model, excepting the
built-in ones, are stereotyped as <<info type>>s. All the constraints (operations
pre/post-conditions and information model invariants) are formalized using OCL.

For illustration purpose, we consider an ISpellCheck interface [4], implemented
by a simple SpellChecker component. ISpellCheck offers a single method,
isCorrect, that checks whether a certain word is correctly spelled or not. The
interface specification makes use of a basic information model, consisting of a set
of strings. There are no invariants associated to this model. The corresponding
usage contract is presented in figure 1.

ISpellCheck

<<interface type>>

+isCorrect(w: String): Boolean

String

+words

* context ISpellCheck::isCorrect(w:String):Boolean

pre: w <> ""

post: result = words->includes(w)

Figure 1. ISpellCheck - Interface Specification Diagram

While a usage contract is a run-time contract with the client, a realization con-
tract is a design-time contract with the component implementor. The realization
contract is represented by the entire component specification, that, apart from the
usage contracts, includes information regarding the following:

• all the interfaces provided and required by the future component;
• inter-interface constraints (relationships between the information models

of the different interfaces);
• interaction scenarios with other components, required in order to imple-

ment the provided services.
The required and provided interfaces are illustrated by means of a Component

Specification Diagram. This is another variation of the UML Class Diagram,
an example being given in figure 2a. Componenent Specification Diagrams form
the building blocks of Arhitecture Specification Diagrams for component-based
systems.

SomeComponent

<<comp spec>>

ISomeInterface

IAnotherInterface

IRequiredInterface

Client /ISomeInterface /IUsedInterface
1 : op1() 1.1 : op2()

Figure 2. a)Component Specification Diagram b)Collaboration Diagram

When a component implements several interfaces and/or requires the services
offered by other interfaces, certain relationships may exist between their associated

ARCHITECTING AND SPECIFYING A SOFTWARE COMPONENT USING UML 335

information models. These inter-interface relationships can be expressed using
OCL constraints. Suppose that the above mentioned SpellChecker component
implements another interface, ICustomSpellCheck, having a state model that also
consists of a collection words of strings, and offering services that allow a potential
client to add (remove) words in (from) the collection. Then, the fact that the two
interfaces work on the same state model can be expressed in OCL as follows:
ISpellCheck::words = ICustomSpellCheck::words.

Required interactions with other components, in order to implement the pro-
vided services, are best described using UML Collaboration Diagrams, as the one
in figure 2b.

3. Case study: LCD Wallet Travelling Clock

3.1. General requirements. We have followed the above mentioned component
specification guidelines in a case study. The object of our case study was the
LCD Wallet Travelling Clock (already introduced in [3]), which we have tried to
approach (architect, specify and implement) from a component perspective.

Figure 3. LCD Wallet Travelling Clock

Next, we give a brief description of the clock’s requirements. There are two
kinds of events that influence its behavior. Firstly, there is an internal tick event
(generated from inside the clock by an inner ticker) whose occurence causes the
time to advance by one second. The same event controls the showing or hiding of
the vertical dots separating the two main display sections of the screen. Secondly,
there may be external events, generated by the user depressing one of the two
buttons offered by the clock (the display button and the set one). By starting in
the default state in which the clock is showing the current time (under the format
hour:minute) and repeteadly depressing the display button, the display states are
went through: date display (under the format month day), seconds display (under
the format :seconds, the underscore character indicating an empty display zone),
then again time display and so on. Analogously, by starting in the default dis-
play state and repeteadly depressing the set button, the setting states are visited:
month setting, day setting, hour setting, minute setting, then again time display
and so on. While in a setting state, the depressing of the display button causes
the value of the component to be set (month, day, hour or minute) to increment
by one unit.

336 DRAGOŞ PETRAŞCU(1) AND VLADIELA PETRAŞCU(2)

3.2. Component architecture and specification. Our aim was to give a Jav-
aBeans component implementation for the LCD Wallet Travelling Clock. By
analysing the general behavioral requirements described earlier, we have decided
to factor the functionality offered by the clock in two provided interfaces: one that
allows client code to send pressDisplayButton and pressSetButton requests,
named IClockKeyboard, and the other, IReadOnlyClockDisplay, used to obtain
the values to be shown on a screen-like part of a user interface. In order to ac-
complish this, IReadOnlyClockDisplay exposes the following three operations:
getLeftSide, getMiddle, and getRightSide. Besides, the clock component re-
quires the services provided by a PropertyChangeListener, in order to notify
the user interface about changes occured in the displayed values. The graphi-
cal component has the ability to register/unregister itself as a clock listener, by
means of [add|remove]PropertyChangeListener services, also offered by the
IReadOnlyClockDisplay interface. All the mentioned interfaces, as well as the
dependencies they cause among the clock component and the ClockFrame (play-
ing the role of a visual interface) are represented on the architecture specification
diagram in figure 4.

Clock

<<component>>

IReadOnlyClockDisplay

IClockKeyboard

PropertyChangeListener

ClockFrame

<<component>>

Figure 4. External view of Clock component

By now, we have offered an external (user) view of our clock component: the
interfaces it provides and requires and the way it interracts with its environment.
Following, figure 5 shows its internal structure through a component-connector-
port architecture. Both diagrams employ the new UML 2.0 component concepts
and associated graphical notations.

Basically, the clock behavior is ensured by a ClockController component ob-
ject. As shown on the architectural diagram in figure 5, the ClockController
offers the same two interfaces provided by the clock (IReadOnlyClockDisplay and
IClockKeyboard); all the messages that the latter receives, requiring services from
one of its interfaces, are further delegated to the controller (this is indicated by the
delegation connectors that link the two ports on the left with the corresponding
provided interfaces). In order to grant this functionality, the ClockController
component requires the services of three other interfaces, namely IClockTicker,
IClockMemory, and IClockDisplay. These are implemented by the ClockTicker,
ClockMemory, and ClockDisplay components, respectively. All three are observed

ARCHITECTING AND SPECIFYING A SOFTWARE COMPONENT USING UML 337

components; they have the ability to notify a potential listener (the controller in
this case) when certain events (ticks) or state changes occur. Therefore, the inter-
faces they provide should offer [add|remove]XListener type services, requiring,
at the same type, services provided by XListener type interfaces. As can be seen,
the PropertyChangeListener interface requied by the clock component is actu-
ally required by its ClockDisplay (another delegation connector that links, this
time, a required interface to a port).

Clock

<<component>>

IReadOnlyClockDisplay

IClockKeyboard

:ClockController

<<component>>

IReadOnlyClockDisplay

IClockKeyboard

<<delegate>>

<<delegate>>

PropertyChangeListener

:ClockDisplay

<<component>>

IClockDisplay

PropertyChangeListener

<<delegate>>

TickEventListener

IClockTicker

:ClockTicker

<<component>>

:ClockMemory

<<component>>

IClockMemory

PropertyChangeListener

Figure 5. Internal architectural view of Clock component

In order to accomodate the space constraints of the paper, we will not enter
the specification details of all interfaces. We will only insist on IClockMemory, by
illustrating its information model, as well as some of the operations’ specifications.

Figure 6 shows the Interface Specification Diagram for IClockMemory. It de-
picts the interface itself, together with the types that make up its information
model. As shown by the diagram, the IClockMemory interface is represented as a
class having the <<interface type>> stereotype, that lists all its services inside

338 DRAGOŞ PETRAŞCU(1) AND VLADIELA PETRAŞCU(2)

IClockMemory

<<interface type>>

+getHour(): Integer

+setHour(newHour: Integer)

+incrementHour()

+getMinute(): Integer

+setMinute(newMinute: Integer)

+incrementMinute()

+getSecond(): Integer

+setSecond(newSecond: Integer)

+incrementCurrentMomentWithOneSecond()

+getMonth(): Integer

+setMonth(newMonth: Integer)

+incrementMonth()

+getDay(): Integer

+setDay(newDay: Integer)

+incrementDay()

+addPropertyChangeListener(l: PropertyChangeListener)

+removePropertyChangeListener(l: PropertyChangeListener)

DateTime

<<info type>>

+hour: Integer

+minute: Integer

+second: Integer

+month: Integer

+day: Integer

+memory

1

PropertyChangeListener

<<info type>>

+listeners

*

Figure 6. IClockMemory - Interface Specification Diagram

the operations compartment. Some of these services enable the handling (set-
ting, getting or incrementing) of values stored in the clock memory (i.e. hour,
minute, second, day, and month), while the others allow the management (adding
or removing) of listeners registered with it. In order to ease the precise speci-
fication of these two types of services, we have associated to the IClockMemory
interface an information model consisting of two classes, namely DateTime and
PropertyChangeListener. Both have the <<info type>> stereotype (since they
represent informational types) and are linked to the interface via composition re-
lationships.

To conclude with the usage contract corresponding to IClockMemory, listing
1 shows some of the OCL pre/post-condition pairs that specify the operations’
semantics. The entire OCL specification has been validated with OCLE 2.0 [1].

3.3. Implementation issues. Up to now we have concentrated on creating a
component architecture and specifications. We have tried to make them as inde-
pendent as possible from technological issues. The provisioning and assembly [2]
phase is concerned with providing realizations for previously defined component
specifications (either by finding existing implementations or developing them from
scratch), as well as binding them as architected.

We have implemented our Clock component all from scratch using the Jav-
aBeans standard. Each component specification has its counterpart in a JavaBean
class (its realization). The bean implements all the provided interfaces appearing
on the component specification diagram. As for the required interfaces, they were
managed by storing their references inside the component object. This depen-
dency allows calling their services whenever needed. The real component objects
supporting these services were plugged inside the client component by means of
specialized “plugging interfaces” that we have created. We regard these so called

ARCHITECTING AND SPECIFYING A SOFTWARE COMPONENT USING UML 339

Listing 1. IClockMemory - OCL constraints. ocl
1 context IClockMemory :: getMonth (): Integer

2 post: result = self.memory.month

3

4 context IClockMemory :: setMonth(newMonth:Integer)

5 pre: newMonth >= MIN_MONTH and newMonth <= MAX_MONTH

6 post: self.memory.month = newMonth

7

8 context IClockMemory :: incrementMonth ()

9 post: self.memory.month = self.memory.month@pre mod NO_OF_MONTH + 1 and

10 if self.memory.day@pre > noOfDays(self.memory.month)

11 then self.memory.day = MIN_DAY

12 else true

13 endif

14

15 context IClockMemory :: incrementCurrentMomentWithOneSecond ()

16 post: if self.memory.second@pre < MAX_SECOND

17 then self.memory.second = self.memory.second@pre + 1

18 else self.memory.second = MIN_SECOND and

19 if self.memory.minute@pre < MAX_MINUTE

20 then self.memory.minute = self.memory.minute@pre + 1

21 else self.memory.minute = MIN_MINUTE and

22 if self.memory.hour@pre < MAX_HOUR

23 then self.memory.hour = self.memory.hour@pre + 1

24 else self.memory.hour = MIN_HOUR and

25 if self.memory.day@pre < noOfDays(self.memory.month@pre)

26 then self.memory.day = self.memory.day@pre + 1

27 else self.memory.day = MIN_DAY and

28 if self.memory.month@pre < MAX_MONTH

29 then self.memory.month = self.memory.month@pre + 1

30 else self.memory.month = MIN_MONTH

31 endif

32 endif

33 endif

34 endif

35 endif

36

37 context IClockMemory :: addPropertyChangeListener(l:PropertyChangeListener)

38 post: listeners = listeners@pre ->including(l)

39

40 context IClockMemory :: removePropertyChangeListener(l:PropertyChangeListener)

41 post: listeners = listeners@pre ->excluding(l)

“plugging interfaces” as playing the role of assembly connectors, linking a compo-
nent’s required interface to a corresponding provided one.

Several patterns have been applied during the design process. Among them,
we may mention the Observer pattern, used for managing the raising of events
by the ClockTicker as well as the state changes occured in the ClockMemory or
ClockDisplay, the State pattern, employed for handling the ClockController’s
dynamic behavior, or the Factory Method pattern, used in building the Clock itself

340 DRAGOŞ PETRAŞCU(1) AND VLADIELA PETRAŞCU(2)

from components. Readers interested in all these details are strongly encouraged
to contact the authors.

4. Conclusions and future work

The current paper belongs to a series of works trying to apply different formal
specification techniques for the LCD Wallet Travelling Clock case study. This
time, we have experimented a component-based approach. We have proposed a
component architecture and we have tried to formally specify its building blocks
using UML and OCL. Following this architecture and specifications, a JavaBeans
implementation has also been developed. As a future research direction, we in-
tend to study the opportunities given by formal specifications in the field of test
automation. Precisely, we will try to derive JUnit test cases based on previously
described OCL constraints.

References

[1] OCLE Homepage. http://lci.cs.ubbcluj.ro/ocle/index.htm.
[2] John Cheesman and John Daniels. UML Components: A Simple Process for Specifying

Component-Based Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2000.

[3] Vladiela Ciobotariu-Boer and Dragoş Petraşcu. X-Machines Modeling. A Case Study. In
Militon Frenţiu, editor, Proceedings of the Symposium “Colocviul Academic Clujean de In-
formatică”, pages 75–80. Faculty of Mathematics and Computer Science, “Babeş-Bolyai”
University of Cluj-Napoca, România, June 2005.

[4] Ivica Crnkovic and Magnus Larsson (editors). Building Reliable Component-Based Software
Systems. Artech House, Inc., Norwood, MA, USA, 2002.

[5] Desmond F. D’Souza and Alan Cameron Wills. Objects, Components, and Frameworks with
UML: the Catalysis Approach. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999.

[6] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

(1) Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Str.
Mihail Kogălniceanu nr. 1, RO-400084 Cluj-Napoca

E-mail address: petrascu@cs.ubbcluj.ro

(2) Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Str.
Mihail Kogălniceanu nr. 1, RO-400084 Cluj-Napoca

E-mail address: vladi@cs.ubbcluj.ro

