
KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2007
Cluj-Napoca (Romania), June 6–8, 2007, pp. 316–323

A HIERARCHICAL CLUSTERING ALGORITHM FOR
SOFTWARE DESIGN IMPROVEMENT

ISTVAN GERGELY CZIBULA(1) AND GABRIELA ŞERBAN(2)

Abstract. Refactoring is a process that helps to maintain the internal soft-
ware quality, during the whole software lifecycle. The aim of this paper is to
present a new hierarchical clustering algorithm that can be used for improv-
ing software systems design. Clustering is used in order to recondition the
class structure of a software system. The proposed approach can be useful for
assisting software engineers in their daily works of refactoring software sys-
tems. We evaluate our approach using the open source case study JHotDraw
([13]), providing a comparison with previous approaches.

1. Introduction

The structure of a software system has a major impact on the maintanability
of the system. That is why continuous restructurings of the code are needed,
otherwise the system becomes difficult to understand and change, and therefore it
is often costly to maintain.

In order to keep the software structure clean and easy to maintain, most mod-
ern software development methodologies (extreme programming and other agile
methodologies) use refactoring to continuously improve the system structure.

In [7], Fowler defines refactoring as “the process of changing a software system
in such a way that it does not alter the external behavior of the code yet improves
its internal structure. It is a disciplined way to clean up code that minimizes
the chances of introducing bugs”. Refactoring is viewed as a way to improve the
design of the code after it has been written. Software developers have to identify
parts of code having a negative impact on the system’s maintainability, and apply
appropriate refactorings in order to remove the so called “bad-smells” ([11]).

In this paper we propose a new hierarchical clustering algorithm that would help
developers to identify the appropriate refactorings. Our approach takes an existing
software and reassembles it using hierarchical clustering, in order to obtain a better

2000 Mathematics Subject Classification. 68N99, 62H30.
Key words and phrases. Software Engineering, Refactoring, Hierarchical Clustering.

c©2007 Babeş-Bolyai University, Cluj-Napoca

316

HIERARCHICAL CLUSTERING ALGORITHM FOR SOFTWARE DESIGN 317

design, suggesting the needed refactorings. Applying the proposed refactorings
remains the decision of the software engineer.

The rest of the paper is structured as follows. Section 2 presents the main
aspect related to the problem of clustering. The clustering approach (CARD) for
determining refactorings, that we have previously introduced in [1], is presented
in Section 3. A new hierarchical clustering algorithm for identifying refactorings
is introduced in Section 4. Section 5 provides an experimental evaluation of our
approach. A comparison of the proposed approach with other similar approaches
is given in Section 6. Conclusions and further work are given in Section 7.

2. Clustering

Unsupervised classification, or clustering, as it is more often referred as, is a
data mining activity that aims to differentiate groups (classes or clusters) inside
a given set of objects ([6]), being considered the most important unsupervised
learning problem. The resulting subsets or groups, distinct and non-empty, are
to be built so that the objects within each cluster are more closely related to
one another than objects assigned to different clusters. Central to the clustering
process is the notion of degree of similarity (or dissimilarity) between the objects.

Let O = {O1, O2, . . . , On} be the set of objects to be clustered. The measure
used for discriminating objects can be any metric or semi-metric function d :
O ×O −→ <. The distance expresses the dissimilarity between objects.

In this paper we are focusing only on hierarchical clustering, that is why an
overview of the hierarchical clustering methods is presented. Hierarchical cluster-
ing methods represent a major class of clustering techniques. There are two styles
of hierarchical clustering algorithms. Given a set of n objects, the agglomerative
(bottom-up) methods begin with n singletons (sets with one element), merging
them until a single cluster is obtained. At each step, the most similar two clusters
are chosen for merging. The divisive (top-down) methods start from one cluster
containing all n objects and split it until n clusters are obtained.

The agglomerative clustering algorithms that were proposed in the literature
differ in the way the two most similar clusters are calculated and the linkage-metric
used (single, complete or average) ([10]).

3. Background. Refactorings Determination using Clustering

In this section we describe the clustering approach (CARD) introduced in [1] in
order to find adequate refactorings to improve the structure of software systems.
Our aim is, that based on the approach from [1], to introduce a new hierarchical
clustering algorithm, that is why a brief description of CARD is given below.

In [1], a software system S is viewed as a set S = {s1, s2, ..., sn}, where si, 1 ≤
i ≤ n can be an application class, a method from a class or an attribute from a
class. CARD consists of three steps:

318 ISTVAN GERGELY CZIBULA(1) AND GABRIELA ŞERBAN(2)

• Data collection. The existing software system is analyzed in order to
extract from it the relevant entities: classes, methods, attributes and the
existent relationships between them.

• Grouping. The set of entities extracted at the previous step are re-
grouped in clusters using a partitioning algorithm (HARED algorithm,
in our approach). The goal of this step is to obtain an improved structure
of the existing software system.

• Refactorings extraction. The newly obtained software structure is
compared with the original structure in order to provide a list of refac-
torings which transform the original structure into an improved one.

A more detailed description of CARD is given in [1]. At the Grouping step
of CARD, the software system S has to be re-grouped. This re-grouping is repre-
sented as a partition of S, K = {K1, K2, ..., Kv}. In the following, we will refer
to Ki as the i-th cluster of K, and to an element si from S as an entity. A cluster
Ki from the partition K represents an application class in the new structure of the
software system.

4. A new Hierarchical Clustering Algorithm for Refactorings
Determination - HARED

Based on the clustering approach CARD described in Section 3, we present in
this section a new hierarchical clustering algorithm for refactoring determination
(HARED - Hierarchical Algorithm for Refactorings Determination). This algo-
rithm can be used in the Grouping step of CARD, in order to find an improved
structure of the software system S.

HARED is based on the idea of hierarchical agglomerative clustering, but uses
an heuristic for merging two clusters. We use average link as linkage metric,
because we have obtained better results with this metric.

The heuristic used in HARED is that, at a given step, the most two similar
clusters (the pair of clusters that have the smallest distance between them) are
merged only if the distance between them is less or equal to a given threshold,
distMin. This means that the entities from the two clusters are close enough
in order to be placed in the same cluster (application class). This heuristic is
particular to our approach and it will provide a good enough choice for merging
two application classes.

In our clustering approach, the objects to be clustered are the entities from the
software system S, i.e., O = {s1, s2, . . . , sn}. Our focus is to group similar entities
from S in order to obtain high cohesive groups (clusters).

We will adapt the generic cohesion measure introduced in [8] that is connected
with the theory of similarity and dissimilarity. In our view, this cohesion measure is
the most appropriate to our goal. We will consider the dissimilarity degree between

HIERARCHICAL CLUSTERING ALGORITHM FOR SOFTWARE DESIGN 319

any two entities from the software system S. Consequently, we will consider the
distance d(si, sj) between two entities si and sj as expressed in Equation (1).

(1) d(si, sj) =

{
1− |p(si)∩p(sj)|

|p(si)∪p(sj)| if p(si) ∩ p(sj) 6= ∅
∞ otherwise

,

where, for a given entity e ∈ S, p(e) represents a set of relevant properties of e,
defined as:

• If e is an attribute, then p(e) consists of: the attribute itself, the appli-
cation class where the attribute is defined, and all methods from S that
access the attribute.

• If e is a method, then p(e) consists of: the method itself, the application
class where the method is defined, and all attributes from S accessed by
the method.

• If e is a class, then p(e) consists of: the application class itself, and all
attributes and methods defined in the class.

Based on the definition of distance d given in Equation (1) it can be easily
proved that d is a semi-metric function. We will consider the distance dist(k, k′)
between two clusters k ∈ K and k′ ∈ K as given in Equation (2).

(2) dist(k, k′) =
1

|k| · |k′| ·
∑

e∈k,e′∈k′
d(e, e′)

The main steps of HARED algorithm are:
• Each entity from the software system is put in its own cluster (singleton).
• The following steps are repeated until the partition of methods remains

unchanged (no more clusters can be selected for merging):
– select the two most similar clusters from the current partition, i.e,

the pair of clusters that minimize the distance from Equation (2).
Let us denote by dmin the distance between the most similar clus-
ters Ki and Kj ;

– if dmin ≤ distMin (the given threshold), then clusters Ki and Kj

will be merged, otherwise the partition remains unchanged.
We give next HARED algorithm.

Algorithm HARED is
Input: - the software system S = {s1, . . . , sn}, n ≥ 2,

- the semi-metric d between entities,
- distMin > 0 the threshold for merging the clusters.

Output: - the partition K = {K1,K2, ...,Kp}, the new structure of S.
Begin

For i ← 1 to n do

320 ISTVAN GERGELY CZIBULA(1) AND GABRIELA ŞERBAN(2)

Ki ← {si} //each entity is put in its own cluster
endfor
K ← {K1, . . . , Kn} //the initial partition

change ← true
While change do //while K changes

dmin ← dist(K1,K2) //the minimum distance between clusters
For i∗ ← 1 to n-1 do //the most similar clusters are chosen
For j∗ ← i∗ + 1 to n do

d ← dist(Ki∗ ,Kj∗)
If d < dmin then

dmin ← d; i ← i∗; j ← j∗

endif
endfor

endfor
If dmin ≤ distMin then

Knew ← Ki ∪Kj; K ← (K \ {Ki,Kj}) ∪ {Knew}
else
change ← false //the partition remains unchanged

endif
endwhile

End.

In our approach we have chosen the value 1 for the threshold distMin, because
distances greater than 1 are obtained only for unrelated entities (Equation (1)).

4.1. Refactorings Extraction. In this section we briefly discuss about the refac-
torings that HARED algorithm is able to identify.

Let us consider that S is the analyzed software system, and thatK = {K1,K2, . . .
,Kp} is the partition provided by HARED, i.e., the new structure of S. The main
refactorings identified by HARED algorithm are given below.

Move Method ([7]) refactoring. It moves a method m of a class C to another
class C ′ that uses the method most. The bad smell motivating this refactoring is
that a method uses or is used by more features of another class than the class in
which it is defined ([5]). This refactoring is identified by HARED by moving the
method m in the cluster Kt corresponding to the class C ′.

Move Attribute ([7]) refactoring. It moves an attribute a of a class C to
another class C ′ that uses the attribute most. The bad smell motivating this
refactoring is that an attribute is used by another class more than the class in
which it is defined ([5]). This refactoring is identified by HARED algorithm by
moving the attribute a in the cluster Kt corresponding to the class C ′.

Inline Class ([7]) refactoring. It moves all members of a class C into another
class C ′ and deletes the old class. The bad smell motivating this refactoring is

HIERARCHICAL CLUSTERING ALGORITHM FOR SOFTWARE DESIGN 321

that a class is not doing very much ([5]). This refactoring is identified by HARED
algorithm by decreasing the number of elements in the partition K. Consequently,
the number of application classes in the new structure of S is decreased, and
classes C and C ′ with their corresponding entities (methods and attributes) will
be merged in the same cluster Kt.

Extract Class ([7]) refactoring. Creates a new class C and move some
cohesive attributes and methods into the new class. The bad smell motivating this
refactoring is that one class offers too much functionality that should be provided
by at least two classes ([5]). This refactoring is identified by HARED algorithm by
increasing the number of elements in the partition K. Consequently, a new cluster
appears, corresponding to a new application class in the new structure of S.

5. Experimental Evaluation

In order to validate our clustering approach, we consider as case study the
open source software JHotDraw, version 5.1 ([13]). It is a Java GUI framework
for technical and structured graphics, developed by Erich Gamma and Thomas
Eggenschwiler, as a design exercise for using design patterns. It consists of 173
classes, 1375 methods and 475 attributes.

At the Data collection step of CARD, in order to extract from the system the
input data for HARED algorithm, we use ASM 3.0 ([3]). ASM is a Java bytecode
manipulation framework. We use this framework in order to extract the structure
of the system (attributes, methods, classes and relationships between entities).

The reason for choosing JHotDraw as a case study is that it is well-known as
a good example for the use of design patterns and as a good design. Our focus is
to test the accuracy of HARED algorithm introduced in Section 4 on JHotDraw,
i.e., how accurate are the results obtained after applying HARED algorithm in
comparison to the current design of JHotDraw. As JHotDraw has a good class
structure, the Grouping step of CARD should generate a nearly identical class
structure. After applying HARED we have obtained the following results:

(i) The algorithm obtains a new class after the re-grouping step, mean-
ing that an Extract Class refactoring is suggested. The methods which
are placed in the new class are: PertFigure.handles, GroupFig-
ure.handles, TextFigure.handles, StandardDrawing.handles.

(ii) There are two misplaced attributes, ColorEntry.fColor and Col-
orEntry.fName which are placed in ColorMap class. This means
that two Move Attribute refactorings are suggested.

(iii) There are four misplaced methods, UngroupCommand.execute, Fig-
ureTransferCommand.insertFigures, SendToBackCommand.exe-
cute, and BringToFrontCommand.execute which are placed in Stan-
dardDrawing class.

In our view, the refactorings identified at (i) and (ii) can be justified.

322 ISTVAN GERGELY CZIBULA(1) AND GABRIELA ŞERBAN(2)

• All the methods enumerated at (i) provide similar functionality ([13]),
so, in our view, these methods can be extracted in a new class in order
to avoid duplicated code, applying Extract Class refactoring.

• ColorMap and ColorEntry are two classes defined in the same source
file. ColorMap is an utility class which manages the default colors
used in the application. ColorEntry is a simple class used only by
ColorMap, that is why, in our view, fColor and fName attributes can
be placed in either of the two classes.

6. Related Work

There are various approaches in the literature in the field of refactoring. The
only approach on the topic studied in this paper, that partially gives the results
obtained on a relevant case study (like JHotDraw) is [2]. The authors use an
evolutionary algorithm in order to obtain a list of refactorings using JHotDraw.

The advantages of HARED algorithm in comparison with the approach pre-
sented in [2] are illustrated bellow:

• In the technique from [2] there are 10 misplaced methods, while in our
approach there are only 4 misplaced methods.

• Our technique is deterministic, in comparison with the approach from
[2]. The evolutionary algorithm from [2] is executed 10 times, in order
to judge how stable are the results.

• The overall running time for the technique from [2] is about 300 minutes
(30 minutes for one run), while HARED algorithm provide the results
in about 3.5 minutes (the execution was made on similar computers).

• As the results are provided in a reasonable time, our approach can be
used by developers in their daily work for improving software systems.

We cannot make a complete comparison with other refactoring approaches,
because, for most of them, the obtained results for relevant case studies are not
available. Most approaches (like [4], [12]) give only short examples indicating
the obtained refactorings. Other techniques address particular refactorings: the
one in [4] focuses on automated support only for identifying ill-structured or low
cohesive functions and the technique in [12] focuses on system decomposition into
subsystems.

7. Conclusions and Future Work

We have presented in this paper, based on the approach from [1], a new hier-
archical clustering algorithm (HARED) that can be used for improving systems
design. We have demonstrated the potential of our approach by applying it to the
open source case study JHotDraw and we have also presented the advantages of
our approach in comparison with existing approaches.

Further work can be done in the following directions:

HIERARCHICAL CLUSTERING ALGORITHM FOR SOFTWARE DESIGN 323

• To apply HARED for other relevant case studies.
• To use other approaches for clustering, such as search based clustering

([9]), or genetic clustering.
• To develop a tool (as a plugin for Eclipse) that is based on the approach

presented in this paper.

References

[1] Czibula, I.G., Serban, G.: Improving Systems Design Using a Clustering Approach. Inter-
national Journal of Computer Science and Network Security, VOL.6, No.12 (2006) 40–49

[2] Seng, O., Stammel, J., Burkhart, D.: Search-Based Determination of Refactorings for Im-
proving the Class Structure of Object-Oriented Systems. Proceedings of GECCO’06 (2006)
1909–1916

[3] http://asm.objectweb.org/ (2006)
[4] Xu, X., Lung, C.H., Zaman, M., Srinivasan, A.: Program Restructuring Through Clustering

Technique. In: 4th IEEE International Workshop on Source Code Analysis and Manipulation
(SCAM 2004), USA (2004) 75–84

[5] Simon, F., Steinbruckner, F., Lewerentz, C.: Metrics based refactoring. In: Proc. European
Conf. Software Maintenance and Reengineering. IEEE Computer Society Press (2001) 30-38

[6] Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publish-
ers (2001)

[7] Fowler, M.: Improving the design of existing code. Addison-Wesley, New-York (1999)
[8] Simon, F., Loffler, S., Lewerentz, C.: Distance based cohesion measuring. In Proceedings of

the 2nd European Software Measurement Conference (FESMA) 99, Technologisch Instituut
Amsterdam (1999)

[9] Doval, D., Mancoridis, S., Mitchell, B.S.: Automatic clustering of software systems using
a genetic algorithm. IEEE Proceedings of the 1999 Int. Conf. on Software Tools and Engi-
neering Practice STEP’99 (1999)

[10] Jain, A., Murty, M.N., Flynn, P.: Data clustering: A review. ACM Computing Surveys 31
(1999) 264–323

[11] McCormick, H., Malveau, R.: Antipatterns: Refactoring Software, Architectures, and
Projects in Crises. John Wiley and Sons (1998)

[12] Lung, C.H.: Software Architecture Recovery and Restructuring through Clustering Tech-
niques. ISAW3, Orlando, SUA (1998) 101–104

[13] JHotDraw Project: http://sourceforge.net/projects/jhotdraw (1997)

(1) Department of Computer Science, Babeş-Bolyai University, 1, M. Kogalniceanu
Street, Cluj-Napoca, Romania,

E-mail address: istvanc@cs.ubbcluj.ro

(2) Department of Computer Science, Babeş-Bolyai University, 1, M. Kogalniceanu
Street, Cluj-Napoca, Romania,

E-mail address: gabis@cs.ubbcluj.ro

