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AUTOMATED PROOF OF GEOMETRY THEOREMS
INVOLVING ORDER RELATION IN THE FRAME OF THE

THEOREMA PROJECT

JUDIT ROBU(1)

Abstract. Collins’ Cylindrical Algebraic Decomposition method (CAD) can
be used to prove geometry theorems that involve order relation (that is, the
algebraic form consists of polynomial equalities and inequalities). Unfortu-
nately only very simple geometric statements can be proved this way, as the
method is very time consuming. To overcome the slowness of Collins’ CAD
method for complicated polynomials we propose a method (section 4) that
combines the area method for computing geometric quantities and the CAD
method. We present an implementation of this method as part of the Geom-
etry Prover in the frame of the Theorema project.

1. Introduction

In this paper we present a method for proving geometry theorems that involve
order relation (that is, the algebraic form consists of polynomial equalities and
inequalities). We deal with a class of statements in plane Euclidean geometry, that
we call constructive geometry statements possibly involving inequalities. These
statements are constructive statements in the sense presented in [5], but they may
also contain further constraints for the constructed points. This way we can also
deal with notions like a point on a segment, incircle or interior bisector.

Collins’ Cylindrical Algebraic Decomposition method (we shall refer to it as
CAD method) introduced in [6], improving earlier work of [9], can be used to prove
geometry theorems that involve order relation as has been observed in [7], [1] and
other papers. Unfortunately only very simple geometric statements can be proved
this way, as the method is very time consuming.
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To overcome the slowness of Collins’ CAD method for complicated polyno-
mials we propose a method that combines the area method presented in [5] and
the CAD method. First we compute the expressions involved in inequalities using
the area method. This way we obtain a new problem equivalent to the original
one that is expressed only in terms of the free points (arbitrary points, introduced
by a point construction, see Definition 1) of the original constructions. Applying
the CAD method to this new problem we can obtain the result in reasonable time
even for quite complicated problems.

The Geometry Prover is part of Theorema, a mathematical software system
implemented in Mathematica and, hence, available on all computer platforms for
which Mathematica is available. Theorema aims at providing one uniform logical
and software technological frame for automated theorem proving in all areas of
mathematics or, in other words and more generally, for formal mathematics, i.e.
proving, solving, and simplifying mathematical formulae relative to mathematical
knowledge bases, see [2], [3]. Theorema is being developed at the RISC Institute by
the Theorema Group under the direction of Bruno Buchberger. For a presentation
of Theorema compared to other existing provers see [10].

Theorema offers a user-friendly interface for problem input. It generates fully
automatically the proofs that contain all the necessary explanations.

The Geometry Prover is based on the methods described in [11], [4], [7],
[5]. The input for the geometry prover, i.e. the algebraic formulation of all the
construction steps and of the property the final configuration should satisfy is
generated automatically from the geometric description of the theorem.

In the next sections we shall

– define the object of our study: the class of constructive geometry statements
possibly involving inequalities in plane Euclidean geometry;

– give a brief description of the area method and our notations relative to
this method;

– present our method based on combining the area method and Collins’ CAD
method for proving the above class of statements;

– give an example.

2. Constructive Geometry Statements Possibly Involving
Inequalities

In this paper we deal with a class of statements in plane Euclidean geometry.
We consider three kinds of geometric objects: points, lines and circles. To make
sure that the constructed objects are welldefined, we need to assume some nonde-
generate conditions (denoted by ndg conditions in what follows). These conditions
are automatically generated by the prover.

A straight line can be defined either by two distinct points, or a point and its
direction. So it can be given in one of the following forms:
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line[A,B] is the line passing through points A and B.
pline[C, A, B] is the line passing through point C, parallel to line[A,B].
tline[C, A,B] is the line passing through point C, perpendicular to line[A,B].

To make sure that all three kinds of lines are welldefined, we need to assume
A 6= B.

circle[O, A] is the circle with point O as its center and passing through point
A. Again, A 6= O has to be assumed.

Definition 1. A construction is one of the following ways to introduce new
points. For each construction we also give its ndg conditions.
C1: point[A1, . . . , An]. Take arbitrary points A1, . . . , An in the plain. Each Ai is

a free point.
C2: pon[A, ln]. Take a point A on line ln. The ndg condition of C2 is the ndg

condition of line ln.
C3: pon[A, circle[O,U ]]. Take a point A on circle[O, U ]. The ndg condition is

O 6= U .
C4: inter[A, ln1, ln2]. Let point A the intersection of line ln1 and line ln2. The

ndg condition is ln1 ∦ ln2.
C5: inter[A, ln, circle[O,P ]]. Introduce point A as the intersection of line ln and

circle[O,P ]. The ndg condition is P 6= O and line ln is not degenerate.
C6: inter[A, circle[O1, P ], circle[O2, P ]]. Point A is the other intersection point

of circle[O1, P ] and circle[O2, P ]. The ndg condition is P 6= O1 and P 6= O2.
C7: pratio[A,W,U, V, r]. Take a point A on the line passing through W and par-

allel to line UV such that WA = rUV , where r can be a rational number,
a rational expression of some geometric quantities, or a variable. The ndg.
condition is U 6= V . UV denotes the length of the oriented segment UV .

C8: tratio[A, U, V, r]. Take a point A on the line passing through U and perpen-
dicular to line UV such that UA = rUV , where r can be a rational number,
a rational expression of some geometric quantities, or a variable. The ndg.
condition is U 6= V .

The point A in each construction is said to be introduced by that construction.

Definition 2. A constructive geometry statement possibly involving inequal-
ities is a list S = (C, H,G), where
1. C = {C1, C2, . . . , Cm} is a construction set. Each Ci is a construction such that

the point introduced by it must be different from points introduced by Cj , j =
1, . . . , i− 1 and other points occurring in Ci must be introduced before;

2. H = {H1,H2, . . . ,Hn} is a set of additional geometric properties whose alge-
braic representation may involve inequalities. All the points appearing in H
have to be introduced by the constructions.

3. G = {G1, G2, . . . , Gk}, the conclusion, is a set of geometric properties of the
points introduced by the constructions (it may also contain inequalities).
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3. The Area Method

As a first step of our proof we use the area method, a coordinatefree technique
for proving geometry theorems based on point elimination. The basic geometry
invariants used are the signed area and Pythagoras differences of oriented triangles
and ratios of oriented segments. The method can deal with geometric statements
of constructive type, where each new point is introduced by one construction using
only previously defined points. The conclusion can be any geometric property that
can be expressed by the help of the defined geometric quantities involving only
the constructed points. This method is also well-suited for computing geometric
expressions that can be expressed using the same set of geometric quantities.

We use capital letters (or combination of capital letters and numbers) to
denote points in the Euclidean plane.

We denote by •L{A,B} the length of the oriented segment from A to B and by
•S{A,B,C} the signed area of the oriented triangle ABC. For an oriented quadri-
lateral ABCD, we define its area as •S{A,B,C,D} = •S{A,B,C} + •S{A,C,D}.

In an oriented triangle ABC the Pythagorean difference •P{A,B,C} is defined
as •P{A,B,C} = •L{A,B}

2 + •L{C,B}
2 − •L{A,C}

2.
We shall understand by geometric quantities the ratio of the length of two

oriented segments on one line or on two parallel lines (denoted by •R{A,B,C,D}),
the signed area of an oriented triangle or a quadrilateral and the Pythagorean
difference of an oriented triangle or a quadrilateral.

We use the elimination lemmas presented in [5].

4. The AreaCAD Method

Our goal is to prove constructive geometry statements possibly involving in-
equalities. As a first step, we reduce the original proof problem to an equivalent
one that makes use only of the points that were introduced as free points. We
compute the expressions that appear as additional hypothesis and conclusions
eliminating the constructed points using the elimination steps of the area method
[5]. Thus we obtain some expressions that depend on the free points and some ra-
tional constants denoted by ri. These constants are introduced by the semibound
points and appear when translating the original constructions into constructions
accepted by the area prover.

Our original proof problem of finding nondegenerate conditions N such that

∀
Ai

i=1,...,p

∀
Bj

j=1,...,m

point[A1, . . . , Ap]∧

∧C1[A1, . . . , Ap, B1] ∧ . . . ∧ Cm[A1, . . . , Ap, B1, . . . , Bm]∧
∧H1[A1, . . . , Ap, B1, . . . , Bm] ∧ . . . ∧Hn[A1, . . . , Ap, B1, . . . , Bm]∧
∧N [A1, . . . , Ap, B1, . . . , Bm] ⇒
⇒ G1[A1, . . . , Ap, B1, . . . , Bm] ∧ . . . ∧Gk[A1, . . . , Ap, B1, . . . , Bm]
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is transformed to the equivalent problem of finding nondegenerate conditions N ′

such that

∀
Ai

i=1,...,p

∀
rj

j=1,...,q

H ′
1[A1, . . . , Ap, r1, . . . , rq] ∧ . . . ∧H ′

n[A1, . . . , Ap, r1, . . . , rq]∧

∧N ′[A1, . . . , Ap, r1, . . . , rq] ⇒
⇒ G′1[A1, . . . , Ap, r1, . . . , rq] ∧ . . . ∧G′k[A1, . . . , Ap, r1, . . . , rq]

As a second step we have to prove this statement using the CAD method. For
the CAD algorithm we have to transform the obtained problem into polynomial
form. To obtain as simple expressions as possible we choose for the origin of
the coordinate system the point with the highest number of occurrences in the
expressions. The next point is taken as being on the xaxis. We may take this
point as having coordinates {1, 0}. This way the algebraic expressions become
even simpler.

If the denominator of an obtained conclusion expression not being 0 does not
result from the hypothesis this should be considered a non-degenerate condition
and added to the hypothesis. At the end of the proof the user has to analyze
whether the obtained condition is a non-degenerate condition or it introduces
some essentially new hypothesis. If the simplified expressions contain square roots
even powers of subexpressions should be extracted from the square roots adding
the necessary conditions.

An implication is true if its conclusion is true or if the hypotheses are con-
tradictory. In this second case we get no information on the logical value of the
conclusion. Thus we check first the consistency of the hypothesis by an existential
quantifier elimination, then the validity of the universally quantified expression is
checked. For this purpose we use the built-in Mathematica functions.

5. Example

Let O be the circumcenter, I the incenter, G the centroid and H the ortho-
center of a triangle. Then OG ≤ OI ≤ OH.

The input for the prover is a Theorema Proposition:

Proposition["Cad 113 27", any[I, A, B, C, P, H, M, N, O, G],
incircle[I, A, B, C, P] ∧ inter[H, tline[A, B, C], tline[B, A, C]] ∧

median[C, M, A, B, C] ∧ median[B, N, A, B, C] ∧
inter[O, tline[M, A, B], tline[N, A, C]] ∧ circle[O, A] ∧
inter[G, line[C, M], line[B, N]]
⇒ inequation[seglengthsq[O, H]− seglengthsq[O, I]≥ 0] ∧

inequation[seglengthsq[O, I]− seglengthsq[O, G]≥ 0]]

To display graphically the geometrical constraints among the involved points
and lines we call function Simplify:
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Simplify[Proposition["Cad 113 27"], by → GraphicSimplifier]

and obtain the output:

A

B

C

G

H

M
P

I

N

O

HO
2 ≥ IO

2
for this configuration of the points

IO
2 ≥ GO

2
for this configuration of the points

Figure 1. Theorema output

The geometry prover is invoked in the usual Theorema manner, specifying
the AreaCAD prover, Theorema does the rest of the work:

– finds the convenient constructions recognized by the Area Prover;
– invoking the Area Prover computes the geometric expressions representing

the constraints and conclusion;
– expresses the obtained new problem as a universally quantified boolean

combination of polynomial equalities and inequalities, using the cartesian
coordinates of the free points;

– invokes the Mathematica ExistsRealQ function to verify the consistency of
the hypothsis, and then the Resolve function to find the trueness of the
universally quantified formula;

– generates the notebook with all the explained details of the proof.

For the function call

Prove[Proposition["Cad 113 27"], by→GeometryProver, ProverOptions→
{Method→"AreaCAD"}]

we obtain the following output from the prover:
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=== Begin of Theorema notebook ===
We have to prove:

(Proposition(CAD 113 27))
∀

I,A,B,C,P,H,M,N,O,G
(incircle[I, A, B, C, P ] ∧ inter[H, tline[A, B, C], tline[B, A, C]]∧

midpont[M, A, B] ∧midpoint[N, A, C] ∧ inter[O, tline[M, A, B], tline[N, A, C]]∧
circle[O, A] ∧ inter[G, line[C, M ], line[B, N ]] ⇒

inequation[seglengthsq[O, H]− seglengthsq[O, I] ≥ 0]∧
inequation[seglengthsq[O, I]− seglengthsq[O, G] ≥ 0]

with no assumptions.
As the proposition contains inequalities, we have to use the CAD method. We shall use the area
method first to obtain a simpler input for CAD.
First we have to transform the problem in internal form for the AreaCAD. We have to prove, that
constructions
{A, B, I} free points
αAB⊥AI and αA ∈ AI with ndg. A 6= I

α1AB ‖ BαA and
Bα1A
BαA

= 2 with ndg. B 6= αA

αBA⊥BI and αB ∈ BI with ndg. B 6= I

α1BA ‖ AαB and
Aα1B
AαB

= 2 with ndg. A 6= αB

C = Aα1A ∩ Bα1B with ndg. A 6= α1A, B 6= α1B , Aα1A ∦ Bα1B

PI⊥AB and P ∈ AB with ndg. A 6= B
αCI⊥AC and αC ∈ AC with ndg. A 6= C
γHB⊥AC and γH ∈ AC with ndg. A 6= C
βHA⊥BC and βH ∈ BC with ndg. B 6= C
H = AβH ∩ BγH with ndg. βH 6= A, γH 6= B, βHA ∦ γHB

MA ‖ AB and AM
AB

= 1
2 with ndg. A 6= B

NA ‖ AC and AN
AC

= 1
2 with ndg. A 6= C

NγO⊥NA and
NγO
NA

= r23 with ndg. A 6= N

βO⊥MA and
MβO
MA

= r22 with ndg. A 6= M

O = MβO ∩NγO with ndg. βO 6= M, γO 6= N, βOM ∦ γON
G = CM ∩ BN with ndg. C 6= M, B 6= N, CM ∦ BN

with additional constraints

•R{A,P,P,B} > 0
•R{A,αC ,αC ,C} > 0

imply that HO
2 − IO

2 ≥ 0 and −GO
2

+ IO
2 ≥ 0

Step 1
Now we try to obtain a simpler form of the constraints and of the conclusion using the area method.
Explanations

========= details about the area method =========

Expression 1
We have to compute •R{A,P,P,B}

========= details of the computation steps =========

We obtain:

•R{A,P,P,B} = E1 =
•L2
{A,B}+•L2

{A,I}−•L2
{B,I}

•L2
{A,B}−•L2

{A,I}+•L2
{B,I}

Expression 2
We have to compute •R{A,αC ,αC ,C}

========= details of the computation steps =========

We obtain:

•R{A,αC ,αC ,C} = E2 =
−•L4

{A,B}+•L4
{A,I}+2•L2

{A,B}•L2
{B,I}−•L4

{B,I}
•L4
{A,B}+

(
•L2
{A,I}−•L2

{B,I}
)2
−2•L2

{A,B}•L2
{A,I}+•L2

{B,I}
Expression 3

We have to compute HO
2 − IO

2
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========= details of the computation steps =========

We obtain:
HO

2 − IO
2

= •P{H,O,H} − •P{I,O,I} = E3 =

−2(•L12
{A,B} − 4 • L10

{A,B} • (L2
{A,I} + •L2

{B,I}) + (•L2
{A,I} − •L2

{B,I})
4

(•L4
{A,I} + •L4

{B,I}) + 7 • L8
{A,B}(•L4

{A,I} + •L4
{B,I} + •L2

{A,I} • L2
{B,I})−

•L2
{A,B}(•L2

{A,I} − •L2
{B,I})

2

(4 • L6
{A,I} + 4 • L6

{B,I} − •L2
{A,I} • L4

{B,I} − •L4
{A,I} • L2

{B,I})−
•L6
{A,B}(8 • L6

{A,I} + 8 • L6
{B,I} + •L2

{A,I} • L4
{B,I} + •L4

{A,I} • L2
{B,I})+

7 • L4
{A,B}(•L8

{A,I} + •L8
{B,I} − •L2

{A,I} • L6
{B,I} − •L6

{A,I} • L2
{B,I}))/

(•L2
{A,B}(− • L2

{A,B} + •L2
{A,I} + •L2

{B,I})
2

(•L4
{A,B} + (•L2

{A,I} − •L2
{B,I})

2 − 2 • L2
{A,B}(•L2

{A,I} + •L2
{B,I})))

Expression 4

We have to compute −GO
2

+ IO
2

========= details of the computation steps =========

We obtain:
−GO

2
+ IO

2
= •P{I,O,I} − •P{O,G,O} = E4 =

2(•L8
{A,B} − 2 • L6

{A,B}(•L2
{A,I} + •L2

{B,I}) + (•L2
{A,I} − •L2

{B,I})
2(•L4

{A,I} + •L4
{B,I})+

•L4
{A,B}(2 • L4

{A,I} + 2 • L4
{B,I} − 7 • L2

{A,I} • L2
{B,I})+

•L2
{A,B}(−2 • L6

{A,I} − 2 • L6
{B,I} + 11 • L2

{A,I} • L4
{B,I} + 11 • L4

{A,I} • L2
{B,I}))/

(9 • L2
{A,B}(− • L2

{A,B} + •L2
{A,I} + •L2

{B,I})
2)

Step 2
Our initial problem becomes

∀
A,B,I

(E1 > 0 ∧ E2 > 0 ⇒ E3 ≥ 0 ∧ E4 ≥ 0)

Choosing a cartesian coordinate system with the x-axis {I, B} and performing substitution:
{xI → 0, yI → 0, xB → 1, yB → 0, xA → u1, yA → u2} the problem becomes:

∀
u1,u2

(
−(−u1+u2

1+u2
2)

−1+u1
> 0 ∧ u1(u2

1+u2
2−u1)

u2
2

> 0 ∧ u1 6= 0 ∧ u2 6= 0 ∧ −1 + u1 6= 0 ⇒
(u8

1−u7
1+6u6

1+u4
1(1−2u4

2)+u4
2(−1+u2

2)2−2u2
1u2

2−u1(u4
2+u6

2)−u5
1(4+u2

2)+u3
1u2

2(3+2u2
2))

(u2
1u2

2(1+u2
1+u2

2−2u1))
≥ 0∧

(−3u5
1+4u6

1+4u4
2+u2

1(4−6u2
2+4u4

2)+u3
1(−3+2u2

2)+u4
1(−2+8u2

2)+5u1(u2
2+u4

2))

(9u2
1(1+u2

1+u2
2−2u1))

≥ 0)

Applying the CAD algorithm to this expression we obtain that the proposition is true.

=== End of Theorema notebook ===

6. Concluding Remarks

In this paper we presented a method for proving a class of plain Euclidean
geometry theorems involving order relation. The algebraic methods for proving
geometry theorems (Gröbner bases, characteristic sets) are very efficient, but they
cannot deal with polynomial inequalities, that is geometry statemnts that involve
order relation. On the other hand, Collins’ CAD algorithm can deal with inequal-
ities, but it is very slow for a system of polynomial equations and inequations with
many variables (usually more than 15 for a nontrivial theorem). We propose a
method that combines the point elimination used in the area method with Collins’
CAD. We used our method to prove several quite difficult theorems, obtaining the
result in reasonable time (at most some minutes).
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