
KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2007
Cluj-Napoca (Romania), June 6–8, 2007, pp. 298–306

EVALUATING DYNAMIC CLIENT-DRIVEN ADAPTATION
DECISION SUPPORT IN MULTIMEDIA PROXY-CACHES

ADRIAN STERCA, CLAUDIU COBÂRZAN, FLORIAN BOIAN, DARIUS BUFNEA

Abstract. Adaptation of multimedia streams in proxy-caches by usually
lowering their quality as a result of a transcoding operation, can yield a lot
of benefits in situations when resources like available bandwidth are scarce.
Such an operation becomes mandatory when client preferences and/or dis-
play capabilities have to be met. We evaluate an alternative to the static
specification of terminal capabilities and user preferences inside multimedia
proxy-caches, namely the use of scaling hints, provided by a protocol still un-
der development, which enables the client to dynamically indicate to proxy-
caches or origin servers the appropriate course of action based on network
load or user’s desires.

1. Introduction

Streamed multimedia data, which continuously gains a bigger percent of the
total amount of data transferred over the Internet, tends to stress the existing
infrastructure as it demands huge bandwidths (when compared for example with
web traffic) and low latencies. Because in most cases, no QoS guaranties can be
given, in the rapid fluctuating environment which is the current Internet, availabil-
ity of multimedia services is certainly a problem. After a successful deployment in
the World Wide Web domain, proxy-caches have also been used in the area of mul-
timedia communications (for video on demand services, video broadcasting, etc.).
A multimedia cache holds multimedia objects (e.g. movies, audio streams, anima-
tions, presentations, etc.) requested by clients in the hope that future requests can
be serviced using the already retrieved objects. Such a mechanism can alleviate
the availability problem, because multimedia objects are served from the cache
through a much better connection (higher bandwidth, smaller delay and jitter),
instead of being served from the original streaming server through a fluctuating
network line. The gains are not only on the client side but also on the server as
an efficient proxy-caching service helps diminish the load imposed on the servers.

2000 Mathematics Subject Classification. 68M14, 68M12.
Key words and phrases. Multimedia proxy-caches, Stream adaptation, Streaming protocols.

c©2007 Babeş-Bolyai University, Cluj-Napoca

298

EVALUATING DYNAMIC CLIENT-DRIVEN ADAPTATION DECISION SUPPORT 299

However, there are some situations when the proxy must further reduce its
bandwidth usage. These situations can appear when the client’s connection to
the proxy is overloaded or when the proxy deals with heterogeneous clients (e.g.
PDA devices, mobile phones, personal computers, etc.) and dynamically changing
user preferences. In these cases, the proxy might choose to adapt the multimedia
objects from its cache (instead of sending a new request to the origin server), so
that the client is able to use the data it receives and the quality of this data is
satisfactory.

The next section presents some other scenarios when adaptation might be useful
in order to reduce the total amount of used bandwidth or meet client expectations.
Section 3 provides a short overview of some of the techniques that can be used when
doing adaptation. Following we present some of the available mechanisms inside
streaming protocols that can assist both the client and the proxy-cache/server
when deciding to perform an adaptation operation. A description of the test
bed we used for the evaluation of those mechanisms as well as a discussion of the
obtained results are presented in Section 5 and Section 6. Further away we present
our conclusions and indicate possible directions for future work.

2. Use case scenarios

We have already mentioned the case of a multimedia proxy-cache having to
service heterogeneous clients (PDAs, mobile phones, desktop computers, tablet
PCs, etc.). In order to do this, the proxy-cache has multiple options: request
the streams encoded in the appropriate format from the server (the adaptation is
done by the server if an appropriate encoded version of the requested file is not
available), perform the adaptation operation locally on already cached objects,
or, if the object is not available locally and the server is not able to provide
the requested quality, perform adaptation on the fly, on the streams it currently
receives and delivers to active clients.

Most of the time the decision to perform adaptation is made at the proxy or at
the server side before the start of the streaming session, but there are also situa-
tions when the client must take such a decision dynamically during the streaming
session. During a video conference conference, each participant will receive and
playback the streams from other participants and, at the same time, each par-
ticipant streams the data captured (e.g. from a webcam) at the highest quality
permitted by the available bandwidth. As not all the participants speak simulta-
neously, it would make sense that the client requests that the stream of the active
speaker is delivered at full quality while the ones belonging to inactive participants
are streamed with minimum quality. In such a case, the proxy could transcode
the streams of the inactive clients and deliver them at a lower resolution and/or
in grayscale. This would lower the bandwidth consumption while also reducing
the burden of displaying all the streams in full quality for the clients with limited

300 ADRIAN STERCA, CLAUDIU COBÂRZAN, FLORIAN BOIAN, DARIUS BUFNEA

or insufficient computational power and/or with limited display capabilities. An-
other example is when at some point during the playback of a music video, the
user might decide to only listen to the audio track and disregard the video con-
tent while busy with another task. At that point he sends an adaptation request
to the proxy/server in order to receive only the audio data. A similar scenario,
when dynamic client-driven transcoding/adaptation is required, can be identified
in a security surveillance system with surveillance cameras sending low quality
streams, that switch to a higher quality when triggered by a sensor or by a hu-
man operator. Dynamic client-driven adaptation requests can also be used in a
client-server/proxy environment as a coarser-granularity replacement for feedback
information.

3. Short Survey of Adaptation Techniques

Adaptation of multimedia content means to be able to either enhance or reduce
the quality of the data in concordance with the user preferences and the terminal
capabilities it specifies.

When it comes to video data (video streams), the most common and frequent
operation that is done is to reduce the quality of the video. In the following, we
will refer only to situations in which the quality of a video stream is reduced by
transcoding operations. By video transcoding, one understands the operation of
converting a video from one format into another format, where a format is defined
by characteristics such as bit-rate, frame-rate, spatial resolution, coding syntax
and content. Transcoders can operate both in compressed and pixel-domain, the
main difference being that, when operating in the compressed domain, the video
data does not need to be decoded, transformed and then re-encoded (like in the
pixel domain architectures). This leads to faster but limited (when it comes to the
complexity of the operation) transcoding operations in the compressed domain.

In the following we will refer to three types of adaptation: temporal adaptation
(which is done in the compressed domain), grayscale and size reduction (which are
done in the decompressed or pixel domain). Temporal adaptation means dropping
frames so that a lower average bitrate of the stream is achieved. Size reduction
means down-sampling to a lower spatial resolution; the frame rate remains the
same while the bitrate is reduced. Grayscale reduction drops the chrominance
information (U and V in YUV format) obtaining a reduced bitrate (chrominance
information makes up to 20% of a bitstream).

4. Dynamic Client-Driven Adaptation Support in Multimedia
Streaming Protocols

When speaking about adaptation there are 3 things that have to be considered:
who performs the operation, who decides when adaptation should be performed
and the moment when the decision is taken.

EVALUATING DYNAMIC CLIENT-DRIVEN ADAPTATION DECISION SUPPORT 301

In a client - server/proxy environment, adaptation can be performed both at
the transmitter (i.e. server or proxy) and at the receiver side (i.e. client player).
Generally, it is preferred that adaptation is performed at the transmitter’s side,
because of the following reasons: (a) multimedia adaptation like transcoding can
be quite resource-consuming and usually the transmitter has greater computing
power than the receiver and (b) an adapted multimedia stream usually has smaller
demands for network bandwidth, so if the adaptation is performed at the trans-
mitter, the network’s bandwidth is used more efficiently.

The decision to adapt a multimedia stream is usually taken by the transmitter
based on feedback from the client and on its current load. However, there are
situations (see section 2) when it is necessary that the receiver takes the adaptation
decision (even if the adaptation process itself is still carried out by the transmitter).

Regarding the moment when the decision to adapt is taken, this can either be
(a) at the beginning of the streaming, during the session negotiation part (e.g.
in the case of heterogenous clients, terminal capability negotiation, etc.), or (b)
arbitrarily during the streaming session (e.g. session migration, changing user
preferences, congested network links, subjective user decision, etc.).

Most of the standard streaming protocols provide little support for dynamic
client-driven adaptation. SDP [1] includes partial support for terminal capabilities
descriptions, while RTP/RTCP [2] supports sending feedback information (num-
ber of packets received/dropped, bandwidth received, etc.), from the client to the
server, but provides no support for sending an adaptation decision from the client
to the server. Extensions to RTSP [3] for stream switching allow the server to no-
tify the client about stream switching. To our knowledge, none of these streaming
protocols have strong support for allowing the client to communicate adaptation
requests dynamically to the server. In the rest of this section, we briefly describe
the Adaptation-aware Multimedia Streaming Protocol (AMSP), an experimental
streaming protocol which provides support for dynamic client-driven adaptation.

UDP/IP flow
Control Channel

Media Channels

Scaling Control Chan.

AMSP Session

V
iT

oo
K

i p
la

ye
r

Client (player)

C
lie

nt
 p

ar
t

Control Channel

Media Channels

Scaling Control Chan.

AMSP Session

Session Manager

Adaptation Module

IO Module

Cache Manager

ViTooKi core components

Server part

Proxy−cache

Figure 1. The streaming system’s architecture

The Adaptation-aware Multimedia Streaming Protocol [4] is a streaming pro-
tocol similar to RTP. It conveys time sensitive information like multimedia data
together with scaling information, so that multimedia streams can be adapted
inside the network according to its rapid changing parameters. The scaling infor-
mation can be used by common core routers to perform packet-level adaptation

302 ADRIAN STERCA, CLAUDIU COBÂRZAN, FLORIAN BOIAN, DARIUS BUFNEA

of multimedia streams (i.e. drop less important packets) or by scaling proxies
to perform complex media transformations inside the network (e.g. color reduc-
tion, temporal reduction, transcoding, etc.). The central concept of AMSP is
the channel concept. Each channel is identified by an 8-bit field in the AMSP
header called the ChannelID field. There are several types of channels AMSP
supports: control channel (conveys configuration information global to the AMSP
session), media channels (deliver multimedia data), metadata channels (transport
metadata), scaling control channels (transport scaling information), retransmis-
sion channels, feedback channels and auxiliary channels (transport other types of
information). A multimedia stream is mapped onto one or more media channels,
and thus, its packets get the priority of the respective channel(s). Basically, an
AMSP session is a multiplexation of several AMSP channels (at least the control
channel). The Scaling Control Channel of an AMSP session can be used to convey
scaling hints or adaptation requests to multimedia proxys or streaming servers
to steer the adaptation of multimedia streams according to the network’s load
or the client’s decision. One or more scaling hints are encapsulated in a scaling
control channel packet which contains the AMSP header (including the channel
id of the packet) and one or several scaling rules. Each scaling rule contains the
scaling action (type of adaptation) to be performed (e.g. temporal reduction, size
reduction, color reduction, requantization, etc.), the media channels on which this
adaptation should be applied, quality and size reduction expected if this scaling
rule is applied and payload specific to each rule.

We have evaluated the use of AMSP scaling hints and AMSP scaling control
channel to enable dynamic client-driven adaptation decision support in multimedia
proxy-caches. The architecture of our streaming environment is described in the
following section.

5. The streaming environment used for evaluation

The streaming environment is built around the ViTooKi framework [5]. Vi-
TooKi (The Video ToolKit) is an open source, high-level C++ multimedia library
created with the goal of simplifying the implementation of multimedia applica-
tions. It offers encoding/decoding support for a number of video and audio for-
mats, streaming via RTP/UDP, various adaptation techniques, meta-data support
(MPEG-7 and MPEG-21), session management through RTSP and SDP and also
cache management. It also includes some useful applications like a streaming
server and a player.

The streaming environment used in our experiments is depicted in Figure 1.
We used the AMSP library developed in [4] and integrated AMSP in ViTooKi as
an IO streaming class so that we can stream multimedia data using AMSP. We
also implemented the scaling control channel which was not implemented in the
original AMSP library. The proxy architecture includes ViTooKi core components
for managing multimedia sessions and for managing the cache, the adaptation

EVALUATING DYNAMIC CLIENT-DRIVEN ADAPTATION DECISION SUPPORT 303

components for performing adaptation and the IO module for reading and de-
coding the multimedia content. All these ViTooKi components are not directly
related to streaming. For streaming multimedia data the proxy uses an AMSP
session which contains three kinds of channels: one control channel (necessary in
an AMSP session for configuring the other channels), several media channels for
sending multimedia data and a scaling control channel for receiving scaling hints
(adaptation requests) from the client.

The experiments presented in the following section show the effects of using
AMSP scaling hints on the state of the system (client, proxy and network) using
the following metrics: client’s perceived quality of multimedia data and the net-
work bandwidth used. We make the following remark on the experiments: due to
the fact that we want to show the effects of enabling dynamic client-driven adap-
tation decisions in multimedia proxy-caches on the network bandwidth used and
on the client’s perceived quality, we assumed multimedia data was always present
in the proxy’s cache so that the proxy doesn’t have to get the data from the orig-
inating streaming server and moreover we ignored all the overhead related to the
management of cache objects which is the same as when AMSP scaling hints were
not used.

6. Experiments and evaluation

To evaluate the effects of enabling dynamic client-driven adaptation decisions
through AMSP scaling hints in multimedia proxy-caches we streamed an MPEG-4
video from the proxy to the client (as depicted in Figure 1), through a traffic-
shaped network line. We used a Linux traffic shaper on the network link between
the proxy and the client and this traffic shaper changes the available bandwidth
every 30 seconds using the following pattern: 75KB/s - 60KB/s - 36.7KB/s -
60KB/s - 75KB/s

So, in the first 30 seconds of streaming, the available bandwidth is 75KB/s,
then it drops to 60KB/s, then after another 30 seconds it drops down to 36.7KB/s
and at this point, after another 30 seconds, the available bandwidth climbs back to
75KB/s in two 30 seconds long steps. The above pattern is repeated indefinitely.
The video stream used in our tests was the MPEG-4 reference stream ”Big Show
One + Two” with 13,000 frames and a frame rate of 25 fps in CIF resolution.
The average bitrate of the stream is 400 kbps, with quantization levels of 28 for B-
VOPs and 16 for I-VOPs and P-VOPs. The stream was encoded with the following
frame pattern in each one second GOP: IBBBBPBBBBPBBBBPBBBBPBBBB.
In order to avoid client buffer underruns, we considered the desired streamout rate
of 457.7 kbps (57.2KB/s) which is a little higher than the average bitrate of the
stream.

We performed three experiments and in each run we measure the effects on the
network bandwidth used and on the client’s perceived quality which we measure
using PSNR. In the first run, the video is not adapted and it is streamed constantly

304 ADRIAN STERCA, CLAUDIU COBÂRZAN, FLORIAN BOIAN, DARIUS BUFNEA

at the desired streamout rate of 57.2KB/s no matter what the available bandwidth
is. In the second run, in the beginning, the proxy streams the video unadapted, at
a constant streamout rate of 57.2KB/s, but around second 65, after the available
bandwidth drops to 36.7KB/s, the client sends a color adaptation request through
the AMSP scaling control channel and the proxy adapts the video at an average
bitrate of 35KB/s using color to grayscale reduction. The third run is exactly like
the second one, only that at second 65, temporal adaptation is used to adapt the
video stream at 35KB/s.

By employing the aforementioned bandwidth fluctuations and by making the
client request adaptation after the available bandwidth drops to 36.7KB/s, we
think that our experiments emulate both use cases presented in section 2, i.e. when
the client decides to request adaptation based on the degradation of the network
conditions (i.e. AMSP scaling hints are used as a coarser-granularity replacement
for feedback) and when the client decides to request adaptation based on its own
subjective desires.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 50 100 150 200 250 300 350 400 450 500

B
an

dw
id

th
 [b

yt
es

/s
ec

]

Streamout seconds

recv bandwidth
sent bandwidth

desired streamout bandwidth

(a) for the unadapted video stream

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 50 100 150 200 250 300 350 400 450 500

B
an

dw
id

th
 [b

yt
es

/s
ec

]

Streamout seconds

recv bandwidth
sent bandwidth

desired streamout bandwidth

(b) for the color adapted video
stream

Figure 2. Bandwidth evolution

For the first streaming scenario, when the video is streamed unadapted at a con-
stant streamout rate of 57.2KB/s, Figure 2(a) shows the evolution of the proxy’s
sent bandwidth and the bandwidth received by the client. We see that although
the proxy streams the video at the desired streamout rate of 57.2KB/s, the client
receives data at a bandwidth that follows the fluctuations imposed by the traffic
shaper. In this streaming scenario, according to Figure 3(a) the stream received
by the client loses up to 27 dB PSNR due to lost I-, P- and B-VOPs. The average
quality reduction is 14.67 dB.

For the second experiment, although the proxy starts streaming the video at the
desired streamout rate (i.e., 57.2KB/s), after 65 seconds, due to a client adaptation
request received through the AMSP scaling control channel, the video stream is
adapted at a bitrate of 35KB/s using color to grayscale adaptation. The evolution
of the sent and received bandwidth is shown in Figure 2(b). It can be seen, that

EVALUATING DYNAMIC CLIENT-DRIVEN ADAPTATION DECISION SUPPORT 305

after second 65, the sent and received bandwidth equal 35KB/s. According to
Figure 3(b) the quality degrades with an average of 12.05 dB PSNR due to lost
VOPs. We note that, after color adaptation was applied, the quality reductions
are less severe than the ones obtained in the first experiment. Please note that in
the first 65 seconds, the PSNR loss is the same for all three experiments.

-35

-30

-25

-20

-15

-10

-5

 0

 0 50 100 150 200 250 300 350 400 450 500 550

P
S

N
R

 [d
B

]

Playout seconds

PSNR loss
avg PSNR loss: -14.67 dB

(a) for the unadapted video
stream

-35

-30

-25

-20

-15

-10

-5

 0

 0 50 100 150 200 250 300 350 400 450 500 550

P
S

N
R

 [d
B

]

Playout seconds

PSNR loss
avg PSNR loss: -12.05 dB

(b) for the color adapted video
stream

-35

-30

-25

-20

-15

-10

-5

 0

 0 50 100 150 200 250 300 350 400 450 500 550

P
S

N
R

 [d
B

]

Playout seconds

PSNR loss
avg PSNR loss: -6.75 dB

(c) for the temporal adapted
video stream

Figure 3. Quality loss

The bandwidth evolution for the third experiment, when temporal adaptation
is applied on the stream after second 65, is the same as the one depicted in Fig-
ure 2(b). According to Figure 3(c) the average quality reduction is 6.75 dB which
is less than the quality reductions observed in the first two experiments. This
fact is shown more clearly in Figure 4(a) where the average PSNR values obtained
for all three experiments are plotted as a function of playout seconds. We can
see there, that in the first 65 seconds, the average PSNR values are the same for
all three experiments, but after the client decides to request adaptation from the
proxy, the temporal adaptation scenario achieves the greater PSNR average, fol-
lowed by the color adaptation scenario and last, by the scenario when the video
was not adapted at all.

We also note that, when the available bandwidth is high (i.e., 75KB/s), the
unadapted stream achieves the greatest PSNR values, so the greatest quality.
This is shown in Figure 4(b) where the PSNR values obtained for the unadapted
stream and the ones obtained for the color adapted stream are compared.

7. Conclusion

We have evaluated the use of dynamic client-driven adaptation decision support
in multimedia proxy-caches through the use of AMSP scaling control channel and
AMSP scaling hints. Our experiments show that providing dynamic client-driven
adaptation support has its benefits on the streaming environment and in some
scenarios, it is the only viable solution.

306 ADRIAN STERCA, CLAUDIU COBÂRZAN, FLORIAN BOIAN, DARIUS BUFNEA

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400 450 500 550

A
ve

ra
ge

 P
S

N
R

 [d
B

]

Playout seconds

no adaptation
color adaptation

temporal adaptation

(a) Average PSNR comparison for
the three experiments

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300 350 400 450 500 550

P
S

N
R

 [d
B

]

Playout seconds

no adaptation
color adaptation

(b) Comparison of PSNR values for
the unadapted and color adapted
video stream

Figure 4. PSNR comparisons

References

[1] M. Handley, V. Jacobson, SDP: Session Description Protocol, RFC 2327, April 1998.
[2] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, RTP: A Transport Protocol for Real-

Time Applications, RFC 3550, July 2003.
[3] H. Schulzrinne, A. Rao, R. Lanphier, Real Time Streaming Protocol (RTSP), RFC 2326,

April 1998.
[4] M. Ohlenroth, Network-Based Adaptation of Multimedia Contents, PhD. Dissertation, Uni-

versity of Klagenfurt, Austria, September 2003.
[5] The ViTooKi Framework, http://vitooki.sourceforge.net/

“Babes-Bolyai“ University, Cluj Napoca
E-mail address: {forest, claudiu, florin, bufny}@cs.ubbcluj.ro

