KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES Proceedings of the International Conference on Knowledge Engineering, Principles and Techniques, KEPT2007 Cluj-Napoca (Romania), June 6–8, 2007, pp. 269–273

THE STABLE SETS OF A G-COMPLEX OF MULTI-ARY RELATIONS AND ITS APPLICATIONS

SERGIU CATARANCIUC

ABSTRACT. We define the notion of internally stable set and externally stable set for the G-complex of multi-ary relations. We define also a simple game with two players, where the solution is established by the kernel of G-complex of multi-ary relations.

The notion of complex of multi-ary relations was defined as a discrete structure, which consists of a special sequences of elements of a set X (see papers [1]-[3]). Generalizing some classical structure as graphs, complex of multi-ary relations is useful as a model to solve some problems in projection of integrating network, in informatics, economics etc. If the elements of the complex of multi-ary relations are sequences with repetitions we obtain a new structure called *G*-complex of multi-ary relations.

Let $X = (x_1, x_2, \ldots, x_r)$ be a set of elements, $r \ge 2$, and $X = X^1, X^2, \ldots, X^n, \ldots, 1 \le n \le r$, a sequence of cartesian products of the set $X : X^{m+1} = X^m \times X$, $m = 1, 2, \ldots, n$. Any not empty subset $R^m \subset X^m$, $m \ge 1$, is said to be *m*-ary relation of elements from X. The set $R^1 \subset X^1$ define a subset of elements from X. The *m*-ary relation R^m consists of a family of sequence with m elements from X in a given order. Now, consider the finite subset of relations $R^1, R^2, \ldots, R^{n+1}$ of the infinite set mentioned above. Require that this subset satisfies the conditions:

- I. $R^1 = X^1 = X;$
- II. $R^{n+1} = \emptyset;$
- III. Any sequence $[x_{j_1}, x_{j_2}, \ldots, x_{j_l}], 1 \leq l \leq m \leq n+1$ of the sequence $[x_{i_1}, x_{i_2}, \ldots, x_{i_m}]$, which represents sequence, is contained in \mathbb{R}^l .

Definition 1. A family of relations $R^1, R^2, \ldots, R^{n+1}$ which satisfies the conditions I-III is said to be **finite-complex of multi-ary relations** and is denoted by $\mathcal{R}^{n+1} = (R^1, R^2, \ldots, R^{n+1})$.

©2007 Babeş-Bolyai University, Cluj-Napoca

²⁰⁰⁰ Mathematics Subject Classification. 18F15, 32Q60, 32C10.

Key words and phrases. G-complex of multi-ary relations, internally stable set, externally stable set, kernel.

SERGIU CATARANCIUC

According to the conditions I-III it results that any set \mathbb{R}^m of the complex of relations \mathcal{R}^{n+1} is not empty.

By according to the study of G-complex of multi-ary relations in paper [4] is defined the basic notions of G-subcomplex, connectivity, path etc. A complex of multi-ary relations $\mathcal{R}^{n+1} = (R^1, R^2, \ldots, R^{n+1})$ can be represented as a family of abstract simplexes and is denoted by $K^n = (\mathcal{S}^0, \mathcal{S}^1, \ldots, \mathcal{S}^n)$ (see paper [4]).

Now let's examine the G-complex formed by the characteristic faces of the simplex $S^m \in K^n$, m > 0, which will be denoted $[S^m]$ and will be written $K_s^{m-1} = [S^m]$.

Definition 2. Let K^n be a *G*-complex of multi-ary relations, an arbitrary simplex $S^m = [x_{i_0}, x_{i_1}, \ldots, x_{i_m}] \in K^m$, m > 0, and $[S^m]$ – the complex formed by S^m . The difference $S^m \setminus [S^m]$ will be called **vacuum** with the dimension *m* and will be notated by $S^{\hat{m}} = S^m \setminus [S^m] = (x_{i_0}, x_{i_1}, \ldots, x_{i_m})$.

Let's say F represents a set of simplexes from K^n . We will denote by T_F the family of all simplexes from K^n which does not contains the own face of simplexes of F, but are incident with F. We will denote by T_F the set of all vacuums (with different dimensions) of these elements (simplexes). Let's examine the difference $K^n \setminus (F \cup T_F)$. So, to simplify the notations, in the place of $K^n \setminus (F \cup T_F)$ we will use $K^n \setminus F$.

Denoted by $st S^m$ the set of all simplexes of dimension m + 1, for which S^m is a common face, and all faced of these simplexes. The set $st S^m$ is said to be **star** of simplex S^m .

Let S^m be a simplex of G-complex of multi-ary relations K^n and K_s be a subcomplex of K^n that contains S^m , all proper faces of S^m , all simplexes of K^n incedented to S^n , and all his faces. The subcomplex $K_s \subset K^n$ is called **superstar** of S^m and is denoted by $St S^m$. The subcomplex $R(S^m) \subset K^n$ which consists of the set of all nonincidented simplexes to S^m of the superstar $St S^m$ is called **the representative of this superstar** and is denoted by $R(S^m)$.

Let's assume we have a connected G-complex of multi-ary relations K^n , an arbitrary simplex $S^m \in K^n$, a superstar $St(S^m)$ and a representative $R(S^m)$ of a superstar. We know that $R(S^m) \cap S^m = \emptyset$.

Now let's conseder a point to set mapping

$$\Gamma: K^n \to K^n,$$

with the property:

$$\Gamma(S^m) \subset R(S^m),$$

for all simplexes $S^m \in K^n$, $m = 0, 1, \ldots, n$.

Definition 3. Let's say I is a family of simplexes of K^n that satisfies the condition: for any $S^m \in I$ it holds

$$\Gamma(S^m) \cap I = \emptyset.$$

270

271

The family of simplexes I of the G-complex K^n is said to be internally independent set (internally stable set) of simplexes of the G-complex K^n .

Remark 1. Not every G-complex of multi-ary relations possesses internally stable sets of simplexes relating to Γ , formed by the oriented complex

$$S^m = \varepsilon(m)[x_{i_0}, x_{i_1}, \dots, x_{i_m}] \in K^n.$$

Let K^n be a complex that admits independent sets, the *J*-ensemble of all shown sets of K^n .

Consequence 1. If $I_1 \in J$ and $I_2 \subset I_1$, then we obtain the relation $I_{\Gamma}^2 \subset I_{\Gamma}$.

Definition 4. Let's consider K^n and the ensemble J. The value

$$\alpha(K^n) = \max_{I \subseteq I} \{ card \, I \}$$

is to be said the internally independent number of G-complex K^n (the number of internally stability).

Definition 5. Let K^n be a connected G-complex of multi-ary relation, and E a family of simplexes from K^n with the property: for any $S^m \in K^n \setminus E$ holds the relation $\Gamma(S^m) \cap E \neq \emptyset$. The family $E \subset K^n$ is called **externally stable set** (externally stable set) of simplexes of G-complex K^n .

Let \mathcal{E} be the ensemble of all externally stable sets of simplexes of complex K^n .

Consequence 2. If $E_1 \in \mathcal{E}$, $E_2 \in \mathcal{E}$, where $E_1 \subset E_2$, then $E_2 \in \mathcal{E}$.

Definition 6. Let K^n be a complex of multi-ary relations, and E_{Γ} – a proper ensemble. The value

$$\beta(K^n) = \min_{E \in \mathcal{E}} \left\{ card \, E \right\}$$

is to be said the externally independent number of G-complex K^n (the number of externally stability).

Definition 7. Let consider a connected G-complex of multi-ary relations K^n , application Γ , and $N \subset K^n$ – a family of simplexes with the properties:

- a) N is a set of internally stable simplexes;
- b) N is a set of externally stable simplexes of K^n ;

The family N is called kernel of G-complex K^n .

Theorem 1. Let's consider a connected local complete G-complex of multi-ary relations K^n which admits the family of internally stable sets $J \neq \emptyset$. An element $I \in J$ is the kernel of complex K^n if and only if this one is maximal.

SERGIU CATARANCIUC

Proof. Let $N \in J$ be the kernel of K^n and let's admit that this one is not maximal internally stable set of K^n . In this case there is at least one simplex $S^m \in K^n$ that satisfied the property $N \cup \{S^m\} = I \in J$ and $S^m \notin N$. By definition 7 (see the property a), if $I \in J$, we have $\Gamma(S^m) \cap I =$. On the other hand, in virtue of definition 7 (see the property b), using the relation $S^m \in K^n \setminus N$, it results the inequality $\Gamma(S^m) \cap N \neq \emptyset$, so $\Gamma(S^m) \cap I \neq \emptyset$.

Let's assume now that $I \in J$ is a maximal internally stable set of simplexes of the complex K^n , and let's demonstrate that I is a kernel of K^n too. We admit the opposite, there is a simplex $S^m \in K^n \setminus I$, such that $\Gamma(S^m) \cap I = \emptyset$. If this equality is satisfied, we obtain immediately that the family $I \cup \{S^m\}$ represents an internally stable set of simplexes of complex K^n , as $\Gamma(S^m) \cap S^m = \emptyset$. The contradiction with the assuming that $I \in J$ is maximal. The theorem 1 is proved.

Definition 8. The next procedure is to be called a simple game with the players A and B on the G-complex K^n .

- 1) A simplex $S^m \in K^n$ is determined arbitrary.
- 2) The player A picks up a simplex from the set $\Gamma(S^m)$ (if $\Gamma(S^m) = \emptyset$, the player A loses). Let S^{m_1} be the simplex picked up by A.
- 3) The player B picks up a simplex from $\Gamma(S^{m_1})$ (if $\Gamma(S^{m_1}) = \emptyset$, the player B loses). Let S^{m_2} be the simplex picked up by B.
- 4) and so on

Definition 9. The sequence of simplexes $S^{m_0}, S^{m_1}, \ldots, S^{m_t}$ of *G*-complex K^n is to be called **trajectory** of K^n related to Γ , if the following conditions are satisfied:

- 1) any pair of simplexes $S^{m_i}, S^{m_{i+1}}$ is particular, $i = 0, 1, \ldots, t-1$;
- 2) for $\forall S^{m_i} \in K^n$ it holds $S^{m_{i+1}} \subset \Gamma(S^{m_i}), i = 0, 1, ..., t 1;$
- 3) if $S^{m_{i+1}}$ and $S^{m_{i-j}}$ are intersected by a simplex $S^{m_{i+1,i-j}}$, where $j = 0, 1, \ldots, i-1$, then this simplex does not belong to the $S_{m_{i+1,i-j}}$.

The trajectory $S^{m_0}, S^{m_1}, \ldots, S^{m_t}$ will be denoted by T(0, t).

The trajectory T(0,t) is said to be maximal related to Γ , if exists a natural number t, such that $\Gamma(S^{m_t}) = \emptyset$. The trajectory T(0,t) is said to be contour-trajectory related to Γ , if exists t_0 , such that $S^{m_0} = S^{m_{t_0}}$.

Let's have a connected G-complex of multi-ary relations K^n , a series of nonnegative integers N_0 and a function $g : K^n \to N_0$, with the property: for any $S^m \in K^n$ it holds $g(S^m) = \min\{N_0 \setminus g(\Gamma(S^m))\}$. The application g is to be called **Grundy function** related to Γ .

Not every G-complex K^n has a Grundy function.

It holds

Theorem 2. Let K^n be a connected G-complex of multi-ary relations, and we consider it exists a Grundy function for K^n related to Γ . The set of all the

272

simplexes S^m of K^n that satisfies the relation $g(S^m) = 0$ represents the kernel of complex K^n .

Proof. Let M be the set of all the simplexes of K^n , which satisfies the relation $g(S^m) = 0$. We will show that:

- 1) M is an internal stable multitude of simplexes;
- 2) M is an external stable multitude of simplexes.
- 1) Let $S^{m_1} \in \Gamma(S^m)$ be a random simplex. From the definition of Γ and the application g, it results that $g(S^{m_1}) \neq 0$, that is $\Gamma(S^m) \cap M = \emptyset$.
- 2) Let $S^{m_1} \in K^n \setminus M$ be a random simplex. In this case $g(S^{m_1}) \neq 0$, so $\Gamma(S^m) \cap \cap M \neq \emptyset$ and M represents a kernel of the complex K^n .

The theorem 2 is proved.

Theorem 3. If the G-complex K^n dispose of a contour-trajectory related to Γ , then the simple game on this G-complex leads to the fact that no one of the players A and B lose.

The proof of theorem 3 is obvious because the players A and B choosing the simplexes on the contour-trajectory. Of cause, they always have the possibility to make the proper movement, if exists a simplex $S^{m_i} \in \Gamma(S^m)$, where S^m is an arbitrary simplex.

References

- [1] SOLTAN P., On the homologies of multi-ary relations and oriented hipergraphs, Studii în metode de analiză numerică și optimizare, vol. 2, nr 1(3), pp.60-81, Chișinău, 2000.
- [2] CATARANCIUC S., SOLTAN P., *Hipergrafuri şi omologiile lor*, Trends in the Development of the Information and Communication Technologies in Education and Management, International Conference, March 20-21, pp.294-300, 2003.
- [3] CATARANCIUC S., About connectivity of general complexes of multi-ary relations, The XIVth Conference on Applied and Industrial mathematics (Satelite Conference of ICM 2006), pp.94-95, Chişinău, August 17-19, 2006.
- [4] CATARANCIUC S., G-complexul de relații multi-are, Analele ştiințifice ale Universității de Stat din Moldova, Seria "Științe fizico-matematice", p.119-122, Chişinău, 2006.

Moldova State University Faculty of Mathematics and Computer Science 60 A. Mateevici street, Chişinău, MD-2009 Republic of Moldova

E-mail address: caseg@usm.md