
KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2007
Cluj-Napoca (Romania), June 6–8, 2007, pp. 261–268

INTRODUCING DATA-DISTRIBUTIONS INTO POWERLIST

THEORY

VIRGINIA NICULESCU(1)

Abstract. PowerList theory is well suited to express recursive, data-parallel
algorithms. Its abstractness is very high and assures simple and correct de-
sign of parallel programs. We try to reconcile this high level of abstraction
with performance by introducing data-distributions into this theory. One ad-
vantage of formally introducing distributions is that it allows us to evaluate
costs, depending on the number of available processors, which is considered
as a parameter. Also, the analysis of the possible distributions for a certain
function may lead to an improvement in the design decisions. Another impor-
tant advantage is that after the introduction of data-distributions, mappings
on real parallel architectures with limited number of procesing elements could
be analyzed.

1. Introduction

PowerLists are data structures introduced by Misra [3], which can be success-
fully used in a simple and provable correct, functional description of parallel pro-
grams, that are divide and conquer in nature. They allow working at a high level of
abstraction, especially because the index notations are not used. To assure meth-
ods that verify the correctness of the parallel programs, algebras and structural
induction principles are defined on these data structures. Based on the structural
induction principle, functions and operators, which represent the parallel pro-
grams, are defined. Generally, unbounded parallelism (the number of processes is
not limited) is analyzed using these structures. Still, the most practical approach
of bounded parallelism may be introduced, and so, the distributions, too.

Mappings on hypercubes have been analyzed for the programs specified based
on these notations [3, 2]; they are based on Gray code. The analysis assumes that
the hypercube has more nodes that the lists which are mapped onto, and this is
an unrealistic assumption.

2000 Mathematics Subject Classification. 65Y05, 68Q85.
Key words and phrases. parallel computation, abstraction, design, distribution, data-

structures.

c©2007 Babeş-Bolyai University, Cluj-Napoca

261

262 VIRGINIA NICULESCU(1)

The PowerList notation has been proved to be a very elegant way to specify
parallel algorithms and prove their correctness. The main advantage of this model
is that offers a simple, formal and elegant way to prove correctness. By formally
introducing data distribution in this model, we enhance it with the possibility of
formally evaluating costs for the case of bounded parallelism. In this way the high
level of abstraction of these theories is reconcile with the performance.

2. PowerList Theory

A PowerList is a linear data structure whose elements are all of the same type.
The length of a PowerList data structure is a power of two. The type constructor
for PowerList is:

(1) PowerList : Type× N→ Type

and so, a PowerList l with 2n elements of type X is specified by PowerList.X.n
(n = loglen.l). A PowerList with a single element a is called singleton, and is
denoted by [a] . If two PowerList structures have the same length and elements
of the same type, they are called similars.

Two similar PowerLists can be combined into a PowerList data structure with
double length, in two different ways:

• using the operator tie p | q; the result contains elements from p followed
by elements from q

• using the operator zip p \ q; the result contains elements from p and q,
alternatively taken.

Therefore, the constructor operators for PowerList are:

(2)
[.] : X → PowerList.X.0
.|. : PowerList.X.n× PowerList.X.n → PowerList.X.(n + 1)
.\. : PowerList.X.n× PowerList.X.n → PowerList.X.(n + 1).

Functions are defined based on the structural induction principle. For example,
the high order function map, which applies a scalar function to each element of a
PowerList is defined as follows:

(3) map.f. [a] = [f.a]
map.f. (p\q) = map.f.p \map.f.q

Another example is the function flat that is applied to a PowerList with ele-
ments which are in turn PowerLists, and it returns a simple PowerList:

(4)
flat. [l] = l
f lat. (p\q) = flat.p \ flat.q or flat. (p | q) = flat.p | flat.q

The reduction of the list to an element by using an associative operator ⊕ is
defined by:

(5)
red.⊕ . [a] = a
red.⊕ . (p|q) = red.⊕ .p⊕ red.⊕ .q

INTRODUCING DATA-DISTRIBUTIONS INTO POWERLIST THEORY 263

Binary associative operators on scalar types can be extended to PowerList.

3. Distributions

The ideal method to implement parallel programs described with PowerLists
is to consider that any application of the operators tie or zip as deconstructors,
leads to two new processes running in parallel, or, at least, to assume that for each
element of the list there is a corresponding process. That means that the number
of processes grows linearly with the size of the data. In this ideal situation, the
time-complexity is usually logarithmic (if the combination step complexity is a
constant), depending on loglen of the input list.

A more practical approach is to consider a bounded number of processes np. In
this case we have to transform de input list, such that no more than np processes are
created. This transformation of the input list corresponds to a data distribution.

Definition 1. D = (δ,A,B) is called a (one-dimensional) distribution if A and
B are finite sets, and δ is a mapping from A to B; set A specifies the set of data
objects (an array with n elements that represent the indices of data objects), and
the set B specifies the set of processes, which is usually p. The function δ assigns
each index i(0 ≤ i < n), and its corresponding element, to a process number [4].

One advantage of PowerList theory is that it does not need to use indices, and
this simplifies very much reasoning and correctness proving. So, we will introduce
distributions not as in the definition above, but as functions on these special data
structures.

The distribution will transform the list into a list with np elements, which are
in turn sublists; each sublist is considered to be assigned to a process.

3.1. PowerList Distributions. We consider PowerList data structures with el-
ements of a certain type X, and with length such that loglen = n. The number
of processes is assumed to be limited to np = 2p (p ≤ n).

Two types of distributions – linear and cyclic, which are well-known distribu-
tions, may be considered. These correspond in our case to the operators tie and
zip. Distributions are defined as PowerList functions, so definitions corresponding
to the base case and to the inductive step have to be specified:

• linear

(6)
distrl.p.(u|v) = distrl.(p− 1).u | distrl.(p− 1).v
distrl.0.l = [l]
distrl.p.x = [x], if loglen.x < p.

• cyclic

(7)
distrc.p.(u\v) = distrc.(p− 1).u \ distrc.(p− 1).v
distrc.0.l = [l]
distrc.p.x = [x], if loglen.x < p.

264 VIRGINIA NICULESCU(1)

The base cases, transform a list l into a singleton, which has the list [l] as its
unique element.

3.1.1. Properties. If we consider u ∈ PowerList.X.n, then distr.n.u = u, where
u is obtained from the list u by transforming each of its elements into a singleton
list.

Also, we have the trivial property distr.0.u = [u].
The result of the application of a distribution distr.p to a list l ∈ PowerList.X.n,

n ≥ p is a list that has 2p elements each of these being a list with 2n−p elements
of type X.

The properties are true for both linear and cyclic distributions.

3.1.2. Function Transformation. We consider a function f defined on PowerList.X.n
based on operator tie with the property that

(8) f.(u|v) = Φ(f.x0, f.x1, . . . , f.xm, u, v),

where xi ∈ PowerLists.X.k, k = loglen n − 1, and xi = ei.u.v, ∀i : 0 ≤ i ≤
m, and ei and Φ are expressions that may use scalar functions and extended
operators on PowerLists. If the function definition Φ is more complex and uses
other functions on PowerLists, then these functions have to be transformed first,
and the considered function after that.

A scalar function f has zero or more scalars as arguments, and its value is a
scalar. The function f is easily extended to a PowerList by applying f “pointwise”
to the elements of the PowerList. A scalar function that operates on two arguments
could be seen as an infix operator, and it also could be extended to PowerLists.

The extensions of the scalar functions on PowerLists could be defined either
using the operator tie or zip. Some properties of these functions could be find in
[3]. For the sake of the clarity, we will introduce the notation f1 that specifies the
corresponding extended function on PowerLists of the scalar function f defined on
the scalar type X. For the case of one argument the definition is:

(9)
f1 : PowerList.X.n → PowerList.X.n
f1.[a] = [f.a]
f1.(p|q) = f1.p|f1.q or f1.(p\q) = f1.p\f1.q

Further, f2 (which is the notation for the extension of f on PowerLists with
elements which are in turn PowerLists) could be defined:

(10)
f2 : PowerList.(PowerList.X.m).n → PowerList.(PowerList.X.m).n
f2.[a] = [f1.a]
f2.(p|q) = f2.p|f2.q or f2.(p\q) = f2.p\f2.q

We intend to show that

f.u = flat ◦ fp.(distl.p.u),

INTRODUCING DATA-DISTRIBUTIONS INTO POWERLIST THEORY 265

where

(11)
fp.(u|v) = Φ2(fp.x0, f

p.x1, . . . , f
p.xm, u, v)

fp.[l] = [fs.l]
fs.u = f.u

Function fp corresponds to parallel execution, and function fs corresponds to
sequential execution.

Lemma 1. Given a scalar function f : X → X, and a distribution function
distr.p, defined on PowerList.X.n, then the following equality is true

(12) dist.p ◦ f1 = f2 ◦ dist.p

Proof. To prove this lemma we use induction on p.
We prove the case of the linear distribution, but the case of the cyclic distribu-

tion distc.p is similar.
Base case(p = 0)

f2.(distl.0.u)
= {p = 0 ⇒ distl.p.u = [u]}

f2.[u]
= {f2 definition}

[f1.u]
= {distrl.0 definition}

distrl.0.(f1.u)

Inductive step

f2.(distl.p.(u|v))
= { definition of distrl}

f2.(distl.(p− 1).u|distl.(p− 1).v)
= {f2 definition}

f2.(distl.(p− 1).u)|f2.(distl.(p− 1).v))
= {induction assumption}

distrl.(p− 1).(f1.u)|distrl.(p− 1).(f1.u)
= {distrl definition}

distrl.p.(f1.u|f1.v)
= {f1 definition}

distrl.p.(f1.(u|v))

The previous result is naturally extended to scalar functions with more argu-
ments, such as infix operators.

Scalar binary associative operators (⊕), could be also extended on PowerLists
as reduction operators – red(⊕). They transform a PowerList into a scalar. For

266 VIRGINIA NICULESCU(1)

them, similar extensions as for scalar functions may be done.

(13)
red1(⊕) : PowerList.X.m → X
red1(⊕).[a] = a
red1(⊕).(p|q) = red1(⊕).p⊕ red1(⊕).q

(14)
red2(⊕) : PowerList.(PowerList.X.m).n → PowerList.X.0
red2(⊕).[l] = [red1(⊕).l]
red2(⊕).(p|q) = [red1(⊕).

(
red2(⊕).p|red2(⊕).q

)
]

Also, a similar property in relation to distributions is obtained:

(15) distr.p ◦ red1(⊕) = red2(⊕) ◦ distr.p

Theorem 1. Given a function f defined on PowerList.X.n as in Eq. 8, a cor-
responding distribution distrl.p, (p ≤ n), and a function fp defined as in Eq. 11,
then the following equality is true

(16) f = flat ◦ (fp ◦ distl.p)

Proof. We will proof the following equation

(17) (distrl.p. ◦ f).u = (fp ◦ distl.p).u
for any u ∈ PowerList.X.n

which implies the equation 16. To prove this, we use again induction on p.
Base case(p = 0)

fp.(distl.0.u)
= {p = 0 ⇒ distl.p.u = [u]}

fp.[u]
= {fp definition}

[fs.u]
= {fs definition}

distrl.p.(f.u)

INTRODUCING DATA-DISTRIBUTIONS INTO POWERLIST THEORY 267

Inductive step

fp.(distl.p.(u|v))
= { definition of distrl}

fp.(distl.(p− 1).u|distl.(p− 1).v)
= {fp definition, scalar functions properties}

Φ2(fp.(e2
0.(distl.(p− 1).u).(distl.(p− 1).v)), . . . ,

fp.(e2
m.(distl.(p− 1).u).(distl.(p− 1).v)), distl.(p− 1).u, distl.(p− 1).v)

= {ei are simple expressions – use scalar functions}
Φ2(fp ◦ distrl.(p− 1).(e0.u.v), . . . ,

fp ◦ distrl.(p− 1).(em.u.v), distl.(p− 1).u, distl.(p− 1).v)
= {induction assumption, and scalar functions properties}

(distrl.p ◦ Φ)(f.(e0.u.v), . . . , f.(em.u.v), u, v)
= {f definition}

distrl.p.(f.(u|v))

For cyclic distribution the proof is similar; the operator tie is replaced with the
operator zip.

3.2. Time Complexity. Considering a function defined on PowerList, and a
distribution distr.p.·, the time-complexity of the resulted program is the sum of
the parallel execution time and the sequential execution time:

T = αT (fp) + T (fs)

where α reflects the costs specific to parallel steps (communication or access to
shared memory). The evaluation considers that the processor-complexity is 2p

(O(2p) processors are used).
Example.(Constant-time combination step) If the time-complexity of the

combination step is a constant Ts(Φ) = Kc,Kc ∈ R, and considering the time-
complexity of computing the function on singletons is equal to Ks (Ks ∈ R also a
constant), then we may evaluate the total complexity as being:

(18) T = Kcpα + Kc(2n−p − 1) + Ks2n−p

If p = n we achieve the cost of the ideal case (unbounded number of processes).
For example, for reduction red(⊕) the time-complexity of the combination

step is a constant, and Ks = 0; so we have

(19) Tred = K⊕(pα + 2n−p − 1)

For extended operators ¯ the combination constant is equal to 0, but we have
the time needed for the operator execution on scalars reflected in the constant
Ks. A similar situation is also for the high order function map. In these cases the
time-complexity is equal to

(20) T = Ks2n−p

268 VIRGINIA NICULESCU(1)

4. Conclusions

The PowerList theory forms an abstract model for parallel computation. It is
very efficient for developing divide&conquer parallel programs. The abstractness
is very high, but we may reconcile this abstractness with performance by intro-
ducing bounded parallelism, and so distributions. The necessity of this kind of
reconciliation for parallel computation models is argued by Gorlatch in [1], and
also by Skillicorn and Talia in [7].

We have proved that the already defined functions on PowerLists could be
easily transformed to accept bounded parallelism, by introducing distributions.
The functions defined based on operator tie have to use linear distributions, and
the functions defined based on operator zip have to use cyclic distributions.

It can be argued that introducing distributions in this theory is not really nec-
essary since we may informally specify that when the maximal number of created
processes is achieved, the implementation transforms any parallel decomposition
into a sequential one. Still, one advantage of formally introducing the distribu-
tions is that it allows us to evaluate costs, depending on the number of available
processors - as a parameter. Also, the analysis of the possible distributions for
a certain function may lead to an improvement in the design decisions. Another
advantage is that we may control the parallel decomposition until a certain level
of tree decomposition is achieved; otherwise parallel decomposition could be done,
for example, in a ‘deep-first’ manner, which could be disadvantageous.

Also, after the introduction of distribution functions, mapping on real archi-
tectures with limited number of processing elements (e.g. hypercubes) could be
analyzed.

References

[1] Gorlatch, S.,: Abstraction and Performance in the Design of Parallel Programs, CMPP’98
First International Workshop on Constructive Methods for Parallel Programming, 1998.

[2] Kornerup, J.: Data Structures for Parallel Recursion. PhD Thesis, Univ. of Texas, 1997.
[3] Misra, J.: PowerList: A structure for parallel recursion. ACM Transactions on Program-

ming Languages and Systems, Vol. 16 No.6 (1994) 1737-1767.
[4] Niculescu, V.: On Data Distributions in the Construction of Parallel Programs, The Journal

of Supercomputing, Kluwer Academic Publishers, 29(1): 5-25, 2004.
[5] Niculescu, V.: Designing a Divide&Conquer Parallel Algorithm for Lagrange Interpola-

tion Using Power, Par, and P Theories, Proceedings of the Symposium “Zilele Academice
Clujene”, 2004, pp. 39-46.

[6] Skillikorn, D.B.: Structuring data parallelism using categorical data types. In Programming
Models for Massively Parallel Computers, pp. 110-115, 1993, Computer Society Press.

[7] Skillicorn, D.B. and Talia, D.: Models and Languages for Parallel Computation. ACM
Computer surveys, 30(2): 123-136, June 1998.

(1) Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-
Napoca

E-mail address: vniculescu@cs.ubbcluj.ro

