KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2007

Cluj-Napoca (Romania), June 6-8, 2007, pp. 252-260

A NEW GRAPH-BASED APPROACH IN ASPECT MINING

GABRIELA SERBAN() AND GRIGORETA SOFIA COJOCAR(®

ABSTRACT. Aspect mining is a process that tries to identify crosscutting con-
cerns in existing software systems. The goal is to refactor the existing systems
to use aspect oriented programming ([3]), in order to make them easier to
maintain and to evolve. This paper aims at presenting a new graph-based
approach in aspect mining. We define the problem of identifying the cross-
cutting concerns as a search problem in a graph and we introduce GRAM
algorithm for solving this problem. We evaluate based on some quality mea-
sures the results obtained by applying GRAM algorithm from the aspect
mining point of view. The proposed approach is compared with a clustering
approach in aspect mining ([5]) and a case study is also reported.

1. INTRODUCTION

1.1. Aspect Mining. Separation of concerns ([1]) is a very important principle
of software engineering that, in its most general form, refers to the ability to
identify, encapsulate and manipulate those parts of software that are relevant to
a particular concept, goal, or purpose. Some of the benefits of a good separation
of concerns are reduced software complexity, improved comprehensability, limited
impact of change, easy evolution and reuse.

Aspect Oriented Programming (AOP) ([3]) provides means to encapsulate con-
cerns which cannot be modularized using traditional programming techniques.
These concerns are called crosscutting concerns. Logging and exception handling
are well known examples of crosscutting concerns. Aspect oriented paradigm of-
fers a powerful technology for supporting the separation of crosscutting concerns.
Such a concern is explicitly specified as an aspect. Aspects encapsulate the im-
plementation of a crosscutting concern. A special tool, called weaver, integrates a
number of aspects to obtain the final software system. Aspect mining is a rela-
tively new research direction that tries to identify crosscutting concerns in already
developed software systems, without using AOP. The goal is to identify them and
then to refactor them to aspects, to achieve a system that can be easily understood,
maintained and modified.

2000 Mathematics Subject Classification. 68N99, 68R10.
Key words and phrases. Software Engineering, Aspect Mining, Graph.

(©2007 Babeg-Bolyai University, Cluj-Napoca

252

A NEW GRAPH-BASED APPROACH IN ASPECT MINING 253

Crosscutting concerns in non AO systems have two symptoms: code scattering
and code tangling. Code scattering means that the code that implements a cross-
cutting concern is spread across the system, and code tangling means that the
code that implements some concern is mixed with code from other (crosscutting)
concerns.

1.2. Related Work. Several approaches have been considered for aspect mining
until now. Some approaches use clone detection techniques to identify duplicate
code that might indicate the presence of crosscutting concerns ([12], [13]). Another
approach uses metrics to identify crosscutting concerns that have the scattering
symptom ([8]). There are also two approaches that use dynamic analysis to dis-
cover crosscutting concerns: one that analyzes the program traces to discover
recurring execution relations ([11]), and one that uses formal concept analysis to
analyze the execution traces ([14]).

A few aspect mining techniques proposed in the literature use clustering in order
to identify crosscutting concerns ([5], [6], [7]). In [6] a vector space model based
clustering approach in aspect mining is proposed. This approach is improved in [5],
by defining a new k-means based clustering algorithm in aspect mining (kAM).
In [7] the methods are clustered based on their names, and then the user can
navigate among the clusters, visualize the source code of the methods and identify
the crosscutting concerns.

In this paper we propose a new graph-based approach, as an alternative to the
clustering approach in aspect mining.

The paper is structured as follows. A theoretical model on which we base our
approach is introduced in Section 2. Section 3 presents a new graph based approach
in aspect mining. An experimental evaluation of our approach, based on some
quality measures, is presented in Section 4. The obtained results are compared
with the ones obtained by applying kAM algorithm ([5]). Some conclusions and
further work are outlined in Section 5.

2. THEORETICAL MODEL

In this section we present the problem of identifying crosscutting concerns as a
problem of identifying a partition of a software system.

Let M = {my,ma,...,m,} be the software system, where m;,1 < ¢ < n is
a method of the system. We denote by n (|M]) the number of methods in the
system.

We consider a crosscutting concern as a set of methods C € M, C = {cy, ¢ca, .. .,
Cen }, methods that implement this concern. The number of methods in the cross-
cutting concern C' is en = |C|. Let CCC = {C4,Cs,...,Cy} be the set of all
crosscutting concerns that exist in the system M. The number of crosscutting

q
concerns in the system M is ¢ = |CCC|. Let NCCC = M \ (U C;) be the set

=1

254 GABRIELA SERBAN() AND GRIGORETA SOFIA COJOCAR®

of methods from the system M, methods that do not implement any crosscutting
concerns.

Definition 1. Partition of a software system M.
The set K = {K1, Ko, ..., Kp} is called a partition of the system M = {my,mao, ...,

P
ma} iff L <p<n K CME #0V1<i<p M=|JK and K;nK; =
i=1

0, Vi, j,1 <i,j <p,i#j.

In the following we will refer to K; as the i-th cluster of K.

In fact, the problem of aspect mining can be viewed as the problem of finding
a partition K of the system M. If the result of an AM technique is a partition of
the software system, we will call it partitioning aspect mining technique.

We propose the following steps for identifying the crosscutting concerns that
have the scattered code symptom:

e Computation - Computation of the set of methods in the selected
source code, and computation of the attribute set values, for each method

in the set.
e Filtering - Methods belonging to some data structures classes (like Ar-

rayList, Vector) are eliminated. We also eliminate the methods belong-

ing to some built-in classes like String, StringBuffer, StringBuilder, etc.
e Grouping - The remaining set of methods is grouped in order to obtain
a partition of the software system M (in our approach using GRAM
algorithm).
e Analysis - A part of the obtained clusters are analyzed in order to dis-
cover which clusters contain methods belonging to crosscutting concerns.

We mention that at the Grouping step, a partition of the software system can
be obtained using a clustering algorithm ([5]) in aspect mining, or using GRAM
algorithm, that will be introduced in the next section.

3. A NEw GRAPH-BASED APPROACH IN ASPECT MINING

In this section we present the problem of obtaining a partition (Definition 1) of
a software system as a search problem in a graph. This graph based approach is,
in fact, a method to identify the clusters in the system and can be viewed as an
alternative to a clustering algorithm in aspect mining ([5]).

In our approach, the objects to be grouped (clustered) are the methods from the
software system: mq,mso, ..., m,. The methods belong to the application classes
or are called from the application classes.

Based on the vector space model, we will consider that the vector associated
with the method m is {FIV,CC%}, where FIV is the fan-in value ([8]) of m (the
number of methods that call m) and CC' is the number of calling classes for m.

In our approach, we will consider the Fuclidian distance between methods as a
measure of dissimilarity between them.

A NEW GRAPH-BASED APPROACH IN ASPECT MINING 255

After a partition of the software system is determined using a partitioning
aspect mining technique, the clusters are sorted by the average distance from
the point 02 in descending order, where 0y is the two-dimensional vector with
each component 0 (in our case two is the dimension of the vector space model).
Then, we analyze the clusters whose distance from 0, point is greater than a given
threshold.

3.1. The Graph Of Concerns. In this section we introduce the concept of graph
of concerns and auxiliary definitions needed to define our search problem. The
concept of graph of concerns introduced below is different from the concept of
concerns graph defined in [2] by Robillard and Murphy and it is used in a different
context.

We mention that the idea of constructing the graph of concerns is specific to
aspect mining and will be explained later.

Definition 2. Let M = {m1,ma,...,m,} be a software system and dg the Eu-
clidian distance metric between methods in a multidimensional space. The graph
of concerns corresponding to the software system M, denoted by GCpr, is an
undirected graph defined as follows: GCpy = (V, £), where:

o The setV of vertices is the set of methods from the software system, i.e.,
V= {ml,mg,...,mn .

o The set £ of edges is & = {(vi,v2) |v1,v2 € V, v1 # v2, dg(vi,v2) <
distMin}, where distMin is a given threshold.

We have chosen the value 1 for the threshold distMin. The reason for choosing
this value is the following: if the distance between two methods m; and m; is less
or equal to 1, we consider that they are similar enough to be placed in the same
(crosscutting) concern. We mention that, from the aspect mining point of view,
using Fuclidian distance as metric and the vector space model proposed above,
the value 1 for dist Min makes the difference between a crosscutting concern and
a non-crosscutting one.

In Definition 3 below we will define the problem of computing a partition of the
software system M.

Definition 3. Let M = {mq,ma,...,m,} be a software system, dg (Euclidian
distance) the metric between methods in a multidimensional space and GCys the
corresponding graph of concerns (Definition 2). We define the problem of com-
puting a partition K = {K1, Ko, ...,Kp} of M as the problem of computing the
connected components of GCpy.

3.2. GRAM Algorithm. In this subsection we briefly describe GRAM algo-
rithm for determining a partition K of a software system M. This algorithm
will be used in the Grouping step (Section 2) for identification of crosscutting
concerns.

256 GABRIELA SERBAN() AND GRIGORETA SOFIA COJOCAR®

Let us consider a software system M = {mj,ma,...,my} and the Euclidian
distance dg between methods in a multidimensional space, and the problem in-
troduced in Definition 3.

The main steps of GRAM algorithm are:

(i) Create the graph of concerns, GC s, as shown in Definition 2. We mention
that the threshold distMin used for creating the edges in the graph is

chosen to be 1. The reason for this choice was explained above.
(ii) Determine the connected components of GCp;. These components give

a partition K of the software system M.

3.3. Example. In the following, we present a small example that shows how meth-
ods are grouped in clusters by GRAM algorithm. If we have the classes shown
in Table 1, the values of the attribute set are presented in Table 2 and the corre-
sponding graph of concerns is shown in Figure 1. The obtained clusters are given
in Table 3.

public class A {
private L 1;
public A(){l=new L(); methB();}
public void methA(){ l.meth(); methB();}
public void methB(){ l.meth();}
}
public class L { Method | FIV CcC
public LO){} AA 0 0
public void meth(){} A.methA 1 1
} A.methB 2 1
public class B { B.B 0 0
public B(){} B.methC 0 0
public void methC(L 1){ l.meth();} B.methD 0 0
public void methD(A a){a.methA();} LL 1 1
} L.meth 3 2
TABLE 1. Code example. TABLE 2. Attribute values.

Cluster Methods

C1 { L.meth }

C2 {A.methA, A.methB, L.L }
C3 { A.A, B.B, B.methC, B.methD }

TABLE 3. The obtained clusters.

A NEW GRAPH-BASED APPROACH IN ASPECT MINING 257

FIGURE 1. Graph of concerns.

4. EXPERIMENTAL EVALUATION

In order to evaluate the results of GRAM algorithm from the aspect mining
point of view, we use a set of quality measures defined in [4].

These measures will be applied on a case study (Subsection 4.2). The obtained
results will be reported in Subsection 4.2. Based on the obtained results, GRAM
algorithm will be compared with kAM algorithm proposed in [5].

4.1. Quality Measures. In this subsection we present three quality measures.
These measures (DIV, ACT and PAN) evaluate a partition from the aspect mining
point of view.

DIV is a measure already defined in [4], but ACT and PAN are newly defined.
All these measures evaluate a partition of a software system from the aspect mining
point of view.

In the following, let us consider a partition K = {Ki,...,K,} of a software
system M = {mi,ma,...,m,} and CCC = {C1,Cy,...,Cy} the set of all cross-
cutting concerns from M (Section 2). The partition X can be obtained using
GRAM algorithm or using a clustering algorithm, like kAM ([5]).

DIV(CCC,K) is introduced in [4] and defines the degree to which each clus-
ter contains methods from different crosscutting concerns or methods from other
concerns. DIV (CCC, K) takes values in [0, 1] and larger values for DIV indicate
better partitions with respect to CCC, meaning that DIV has to be maximized.

Definition 4. ACcuracy of a partitioning based aspect mining Technique
- ACT.

Let T be a partitioning aspect mining technique.

The accuracy of T with respect to a partition IKC and the set CCC, denoted by
ACT(CCC,K,T), is defined as:

q
ACT(CCC,K,T) = 1 > act(Cy, K, T).

i=1

258 GABRIELA SERBAN() AND GRIGORETA SOFIA COJOCAR®

act(C, K, T) is the accuracy of T with respect to the crosscutting concern C, and
is defined as:
[C N K|

act(C,K,T) = Z]

j=1
where r (1 <r < p) is the last cluster analyzed by T.

For a given crosscutting concern C' € CCC, act(C, K, T) defines the percentage
of methods from C that were discovered by 7.

In all partitioning aspect mining techniques, only a part of the clusters are an-
alyzed, meaning that some crosscutting concerns or parts of them may be missed.

Based on Definition 4, ACT(CCC,K,T) € (0,1]. Larger values for ACT indi-
cate better partitions with respect to CCC, meaning that ACT has to be maxi-
mized.

Definition 5. Percentage of A Nalyzed methods for a partition - PAN.
Let us consider that the partition K is analyzed in the following order: Ky, K,
LK.

The percentage of analyzed methods for a partition K with respect to the set

CCC, denoted by PAN(CCC,K), is defined as:

1
PAN(CCC,K) == pan(C;, K).
155
pan(C, K) is the percentage of the methods that need to be analyzed in the partition
K in order to discover the crosscutting concern C, and is defined as:

1 S
pan(C,K) = =3 |Kj|
j=1

where s = maz{t|1 < t < p and K; N C # 0} is the index of the last cluster in
the partition KC that contains methods from C'.

PAN(CCC,K) defines the percentage of the number of methods that need to
be analyzed in the partition in order to discover all crosscutting concerns that are
in the system M. We consider that a crosscutting concern was discovered when
all the methods that implement it were analyzed.

Based on Definition 5, it can be proved that PAN(CCC,K) € (0,1]. Smaller
values for PAN indicate shorter time for analysis, meaning that PAN has to be
minimized.

4.2. Results. In order to evaluate the results of GRAM algorithm, we consider
as case study JHotDraw, version 5.2 ([9]).

This case study is a Java GUI framework for technical and structured graphics,
developed by Erich Gamma and Thomas Eggenschwiler, as a design exercise for
using design patterns. It consists of 190 classes and 1963 methods.

A NEW GRAPH-BASED APPROACH IN ASPECT MINING 259

In this subsection we present the results obtained after applying GRAM algo-
rithm described in Subsection 3.2, for the vector space model presented in Section
3, with respect to the quality measures described in Subsection 4.1, for the case
study presented above.

The results obtained by GRAM are compared with the results obtained by kA M
algorithm proposed in [5].

In Table 1 we present the comparative results.

Algorithm | DIV | ACT | PAN
GRAM | 0.857 | 0.299 | 0.346
kAM 0.842 | 0.278 | 0.361
TABLE 4. The values of the quality measures for JHotDraw case study.

From Table 1 we observe, based on the properties of the quality measures defined
in the above subsection, that GRAM algorithm provides better results from the
aspect mining point of view, than kAM algorithm.

In our view, the vector space model has a significant influence on the obtained
results. We are working on improving the vector space model in order to handle
the tangling code symptom, too.

So far no comparison between existing aspect mining techniques was reported
in the literature. No comparison between GRAM and other similar approaches is
provided for the following reasons:

e some techniques are dynamic and they depend on the data used during

executions ([11], [14]);
e for the static techniques ([8], [7]) only parts of the results are publicly

available;
e there is no case study used by all these techniques.

5. CONCLUSIONS AND FUTURE WORK

We have presented in this paper a new graph-based approach in aspect mining.
For this purpose we have introduced GRAM algorithm, that identifies a partition
of a software system. This partition is analyzed in order to identify the crosscutting
concerns from the system. In order to evaluate the obtained results from the
aspect mining point of view, we have used a set of quality measures. Based on
these measures, we showed that GRAM algorithm provides better partitions than
kAM algorithm (previously introduced in [5]).

Further work can be done in the following directions:

e To apply this approach for other case studies, like JEdit ([10]).
e To compare the results provided by GRAM with the results of other

approaches in aspect mining.
e To identify a choice for the threshold distMin that will lead to better

results.

260 GABRIELA SERBAN() AND GRIGORETA SOFIA COJOCAR®

e To improve the results obtained by GRAM, by improving the vector
space model used.
REFERENCES

[1] David. L. Parnas. On The Criteria To Be Used in Decomposing Systems Into Modules.
Communications of the ACM, 15(12), 1972, pp. 1053-1058.

[2] Robillard, M.P., Murphy, G.C.: Concern graphs: finding and describing concerns us-
ing structural program dependencies. In: Proceedings of the 24th International Con-
ference on Software Engineering. Orlando, Florida (2002) 406-416

[3] Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-Oriented Programming. In: Proceedings European Conference on
Object-Oriented Programming. Volume 1241. Springer-Verlag (1997) 220-242

[4] Moldovan, G.S., Serban, G.: Quality Measures for Evaluating the Results of Clus-
tering Based Aspect Mining Techniques. In: Proceedings of Towards Evaluation of
Aspect Mining(TEAM), ECOOP. (2006) 13-16

[5] Serban, G., Moldovan, G.S.: A new k-means based clustering algorithm in aspect
mining. In: Proceedings of 8th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC’06). (2006) 60—64

[6] Moldovan, G.S., Serban, G.: Aspect Mining using a Vector-Space Model Based Clus-
tering Approach. In: Proceedings of Linking Aspect Technology and Evolution (LATE)
Workshop. (2006) 36-40

[7] Shepherd, D., Pollock, L.: Interfaces, Aspects, and Views. In: Proceedings of Linking
Aspect Technology and Evolution (LATE) Workshop. (2005)

[8] Marin, M., van, A., Deursen, Moonen, L.: Identifying Aspects Using Fan-in
Analysis. In: Proceedings of the 11th Working Conference on Reverse Engineering
(WCRE2004). IEEE Computer Society (2004) 132-141

[9] JHotDraw Project: http://sourceforge.net/projects/jhotdraw (1997)

[10] jEdit Programmer’s Text Editor: http://www.jedit.org (2002)

[11] Breu, S., Krinke, J.: Aspect Mining using Event Traces. In: Proceedings of Interna-
tional Conference on Automated Software Engineering. (2004) 310-315

[12] Bruntink, M., van Deursen, A., van Engelen, R., Tourwé, T.: An Evaluation of Clone
Detection Techniques for Identifying Crosscutting Concerns. In: Proceedings Interna-
tional Conference on Software Maintenance(ICSM 2004). IEEE Computer Society
(2004)

[13] Morales, O.A.M.: Aspect Mining Using Clone Detection. Master’s thesis, Delft Uni-
versity of Technology, The Netherlands. (2004)

[14] Tonella, P., Ceccato, M.: Aspect Mining through the Formal Concept Analysis
of Execution Traces. In: Proceedings of the IEEE Eleventh Working Conference on
Reverse Engineering (WCRE 2004). (2004) 112-121

(1) DEPARTMENT OF COMPUTER SCIENCE, BABES-BOLYAI UNIVERSITY, 1, M. KOGALNICEANU
STREET, CLUJ-NAPOCA, ROMANIA,
E-mail address: gabis@cs.ubbcluj.ro

(2) DEPARTMENT OF COMPUTER SCIENCE, BABES-BOLYAI UNIVERSITY, 1, M. KOGALNICEANU
STREET, CLUJ-NAPOCA, ROMANIA,
E-mail address: grigo@cs.ubbcluj.ro

