
KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2007
Cluj-Napoca (Romania), June 6–8, 2007, pp. 227–235

SOME FORMAL APPROACHES FOR DYNAMIC LIFE SESSION
MANAGEMENT

F. BOIAN(1), D. BUFNEA(2), A. VANCEA(3), A. STERCA(4), D. COJOCAR(5),
AND R. BOIAN(6)

Abstract. At this moment, the lifetime of a Web session is rigidly estab-
lished at the level of the Web application and certain implicit constant values
are suggested for this duration in the same stiffly manner by most of the Web
technologies. This paper introduces some formal models for determining,
establishing and dynamic maintaining the lifetime of a HTTP session. To
achieve these goals we took into account also the personalized type of work
every user does and the particular way in which he or she interacts with the
Web application/server. In the following, three different formal approaches
will be presented regarding the lifetime management of a Web session.

1. Introduction

If Tim Berners-Lee would have realized the impact and the ampleness which
the HTTP protocol would have in the widespread and development of the Internet
network at the beginning of ’90s (but also the huge number of problems that this
protocol had to face) then probably the specifications of this protocol would have
been quite different. Today, using the Internet and the Web has acieved a social
aspect, being a usual part of the everyday life of many. If at the beginning, the Web
and the HTTP protocol were designed for presenting and exchanging documentats,
manuals or scientific content information between researchers and academics, once
the commercial Internet emerged and spread towards ordinary people, the actual
requirements and challenges that this protocol and the HTML language has to
face have changed. As the popularity and requirements of web applications grow
higher, the HTTP design faces several problems. A set of such problems are related
to the stateless dialog model using the HTTP protocol between a client-user and
the Web server.

To overcome the drawbacks of the stateless communication model between the
client and the server, the web application use the concept of HTTP working session.

2000 Mathematics Subject Classification. 90C59, 47N30.
Key words and phrases. dynamic HTTP session management.

c©2007 Babeş-Bolyai University, Cluj-Napoca

227



228 BOIAN, BUFNEA, VANCEA, STERCA, COJOCAR, AND BOIAN

In its most simple form, an HTTP session may be defined as the set of all the
connections issued by a certain client to the Web server involved in solving the
same problem at a given moment. The server is responsible for identifying at any
given moment to which user a pending request belongs to and for sending back
content (dynamically, in most of the cases) accordingly. The returned content
varies depending on the requested action and the served user. The most popular
mechanisms used to identify the session corresponding to a new request are:

- session id tagging of the requested URLs;
- session id tagging of request’s HTTP headers (using cookies);
- SSL based (HTTPS) session management.
While these mechanisms solve the request/session matching succesfully, they

do not offer any means for controlling the life-time of the session. The inability to
determine the end of a session’s life-time comes primarily from the stateless design
of the HTTP protocol.

2. Previous work

Most Web technologies apply a rigid and inflexible vision (naive in a certain
way) when establishing the lifetime of a session, namely to resort to a fix amount
of time (we will call it Tfixed), usually 15-30 minutes long. If the user does not
issue a request (does not interact with the application/Web server during an Tfixed

time interval), he is considered “idle” and the working session is invalidated. In
other words, from a stateful model perspective, the connection through which the
client is served is closed. Although most web technologies allow on the server-side
modification of the session expiration time, they do not offer any management
or information relative to how this duration can be efficiently changed. Such a
mechanism is much more necessary, because most users do not “officially” close
the session (they either simply “forget” to click the logout button and either close
the browser or leave the web application open for a long time).

Boian presents in [BB06a] an efficient model for calcualting the session lifetime.
The mechanism proposed in [BB06a] is based on requiring explicit feedback from
the client regarding its status. The time intervals at which this feedback is required
are usually much smaller than the session’s lifetime, so a fine time granularity is
possible for session lifetime calculation. The feedback request intervals remain
however rigid, fixed at a constant value s. Therefore, in [BB06a], Boian identifies
two types of interactions between the client and the Web server as below (see
figure 1):

- Business type actions initiated by the direct interaction between the user
and the Web application (GET requests, POST or GET submits);

- Web-ping type actions which consist of periodically accessing (at fixed
time intervals of s seconds) an URL u by the client, this invocation
notifying the server relative to actively maintaining the working session
from the client’s part.



SOME FORMAL APPROACHES FOR DYNAMIC LIFE SESSION MANAGEMENT 229

Client’s notification regarding the necessity of accomplishing a Web-ping type
action is done by using HTTP headers, inserted in the answering pages dynamically
generated by the Web server, by means of a field which has the following form:
<meta http-equiv=“refreh” content=“s;url=u”>

Figure 1. Web application architecture with Web-ping requests

For the Web-ping type actions not to affect the session’s lifetime, when receiving
such an action by the Web server/application, the Tfixed value is diminished by
the time elapsed from the moment of the last performed action until the actual
moment. For the server to decide if the client (browser) is inactive, it waits
maximum r successive Web-pings, which follow one after the other without any
business action between them. The r value is heuristically established, such that
r × s << Tfixed.

3. Contributions

There is a significant number of situations in which the client - Web application
interaction assumes frequently repeating different actions initiated by the user
- one can identify a certain pattern in the user’s behavior. Examples of such
activities are: reading the e-mails using a Web-based client, browsing the pages
inside a forum, assigning student’s grades using the AMS portal [BB06b] etc.
In such cases, based on identifying the user’s type and time of answer, one can
anticipate the user’s behavior at the level of the Web server and determine in a
more rigorous way a more flexible lifetime (depending on the user/application).
The flexibility of the proposed model will be much more significant as the client
is explicitly informed about the necessity of offering a feedback in a certain time
interval, if it does not directly interact with the Web application.

Anticipating the user’s behavior can be done either at the level of the Web
application, or at a lower level inside of the application server which hosts that
particular application. The application server may export this information to
other Web applications by means of an API which the application can decide to



230 BOIAN, BUFNEA, VANCEA, STERCA, COJOCAR, AND BOIAN

use it or not. The level of reusability, portability and the impact of the proposed
mechanism are thus enhanced.

The present paper introduces some formal models for the dynamic management
of the session’s lifetime and for determining (also as a dynamic value) the time
intervals at which the client must notify the Web server/application about its
presence. In the exposed approaches we will take into account also the personalized
type of work every user has and the particular way in which he interacts with the
application.

4. Formal models

We consider until the time moment n, the time intervals elapsed between two
user’s consecutive interactions (business actions) with the Web application (such
an interaction assumes a simple GET request, a submit action either by the GET
method either by the POST one). We consider the length of these intervals to be
t1, t2, . . . , tn, where ti is the length of the time interval from the time moment i
(the time elapsed between the business actions i− 1 and i).

4.1. Statistical approaches. In [BB06a] the s value was established as an appli-
cation constant. In the following, after each business action we will compute the
maximum probable interval of time in which a business action should normally oc-
cur (we will try to anticipate the client’s next business action). This value depends
on two factors:

- the time moments of client’s business actions from the start of the session
up to the present time;

- the succession speed of the latest business actions.
Having as input data the random variable T = (t1, t2, . . . , tn), our goal is to

estimate the value tn+1. We will use the following statistics elements [GS97]:
mean, standard deviation and linear regression.

The estimation technique is illustrated in figure 2. The figure plots the eleven
time intervals between the twelve requests posted by a user to a web application.
The linear regression and mean of the elevent points are displayed in continuous
lines. Teh dashed lines are parallel to the mean and linear regression lines, but
are higher by three standrd deviations.

Let mn = 1
n ×

n∑
i=1

ti and σn =

√
1

n−1 ×
n∑

i=1

(ti −mn)2 be the mean, respectively

the standard deviation of random variable T . We also denote by y = an ×X + bn

the regression line where
n∑

i=1

(an × i + bn − ti)2 → minimum. This line is the best

least squares fitting line for points ti.
Without going into too many details, through simple calculus, we obtain the

formulas for computing mn, σn, an and bn as a function of mn−1, σn−1, an−1,
bn−1 and tn.



SOME FORMAL APPROACHES FOR DYNAMIC LIFE SESSION MANAGEMENT 231

Figure 2. Statistical estimation of the latest moment when the
next request will arrive

(1) M1n =
n∑

i=1

ti = M1n−1 + tn

(2) M2n =
n∑

i=1

t2i = M2n−1 + t2n

(3) MIn =
n∑

i=1

i× ti = MIn−1 + n× tn

(4) mn =
1
n

M1n

(5) σn =

√
1

n− 1
(M2n − 2mn ×M1n + n×m2

n)

The simple regresion line y = anx + bn has the following coefficients:

(6) an =
6[2MIn − (n + 1)M1n]

n(n + 1)(n− 1)



232 BOIAN, BUFNEA, VANCEA, STERCA, COJOCAR, AND BOIAN

(7) bn =
2M1− an

n(n + 1)
2n

The standard deviation σn of the Z, zi = ai + b− ti, random variable is:

σn =

√
1

n− 1
(
a2

nn(n + 1)(2n + 1)
6

+ nb2
n + M2n + n×mn

2+

anbnn(n + 1)− 2anMIn − anmnn(n + 1)− 2bnM1n − 2nbnmn+

2mnM1n)

where:

(8) mn =
an(n + 1)

2
+ bn +

M1n

n
The well known three σ rule from statistics says: “the next value of a random

variable will be in the interval [m − 3σ,m + 3σ] with a probability of over 99%”.
According to this rule, we can expect that tn+1 < mn + 3σ.

Also, according to a well known heuristic principle taken from operating sys-
tems theory [BV07], if at some point in time a certain resource location (memory
location, disk location etc.) is being accessed, then the next access will be in the
vicinity of the previous one with a very high probability.

In our context, this principle translates to: “if the frequency of the latest busi-
ness actions’ occurrence is high, then it is expected that the frequency of occurrence
of the next business actions remains high in the following period”. The example
from figure 2 depicts such a situation. If this frequency was low, it is expected
to remain low. Due to these reasons, we intend to consider the regression line
which gives the slope of business actions occurrences frequency. According to this
observation we can expect that tn+1 < an × (n + 1) + bn + 3σn, where σn is the
data’s standard deviation from the regression line.

Combining the above two principles, we will express tn+1 as:

tn+1 = max(mn + 3σ, an × (n + 1) + bn + 3σn)

4.2. A transport level approach for dynamic life session management.
A different approach for the same goal can be considered. It implies the use of
a model similar to the one used in the TCP protocol for estimating the nominal
value of the round-trip time.

Having at time n an estimation, En, for the time that must pass until the user
will interact with the web application again, we approximate the length of the
time interval between time moment n and time moment n + 1 as:

En+1 = α× En + (1− α)× tn



SOME FORMAL APPROACHES FOR DYNAMIC LIFE SESSION MANAGEMENT 233

where the interaction time estimation at moment Ei has a higher weight in
anticipating the interaction time at moment En+1 than the length of the time
interval between time moment n − 1 and n (α > 0.5). This approach eliminates
the noise which occurs in estimating the client’s interaction time with the web
application/server and, on the long run, for a relatively constant behavior of the
client makes the estimation value converge to the real value of the interaction
time. For an optimal implementation of the above formula, in practice, the value
α = 0.875 will be used (the two multiply operations will reduce to a bit shift and
a substract operation).

For a best fit of this estimated time moment, we use an approximation error
interval around the length of the time interval which is computed above. Thus,
we approximate the time moment tn+1 as:

tn+1 = En+1 + ln+1

where ln+1 is a value which increases proportionally to the variation of client’s
interaction time values (time moment tn+1 will be approximated in a bigger time
interval):

ln+1 = β × ln + (1− β)× (tn − tn−1)

where β = 0.875.

4.3. The use of the tn+1 estimation. The formal models presented above can
be implemented at application level in a web application server to dynamically
track the life time of a session depending on the custom behavior of each client.
Moreover, once the next interaction time with the web application/server is esti-
mated, the web server can notify the client through an HTTP header (cookie -
[FG99]) about the necessity of an explicit feedback (keep-alive message) from him.
This feedback can be performed either by a direct action of the user or through a
Web-ping mechanism like the one described in [BB06a].

In the absence of such a feedback, at time moment n+1, in the most conservative
approach, the web server/application can decide to invalidate/close the user session
even if the life time of such a session is set to a value of Tfixed > tn+1. A more
flexible approach, identical to the one proposed in [BB06a], implies the cancellation
of a user session only after r× tn+1 seconds if the web application/server receives
no message (action) from the client in this time interval. This approach allows
also the cancellation of a user session if the client (browser) does not act.

For example, if x ping messages are received and no business message, then one
can consider cancelling the user session for inactivity reasons. The values r and x
has to be have heuristic values (we will address this in future papers).

Figure 3 presents real values time evolution vs. estimated ones time evolution.



234 BOIAN, BUFNEA, VANCEA, STERCA, COJOCAR, AND BOIAN

Figure 3. Session lifetime estimation results

5. Conclusion and future work

Our paper introduces two formal models for dynamically tracking the life time of
an HTTP session, models intended to replace the rigid way of setting a session’s life
time to a constant value. Also, it proves that a couple of concepts and mechanisms
applied to some layers of the TCP/IP stack can be adapted and used at other layers
of the stack (in our case, a transport layer mechanism was used at the application
layer).

As future work, we intend to implement the proposed models in a web applica-
tion which is used frequently, e.g. [BB06b]. Also, we want to create an API that
extends the functionality of an application server and offers the suggested func-
tionality to all interested applications (migrate the business logic of the proposed
models from the web application to the application server layer).

References

[BB06a] F.M. Boian, D. Bufnea, A. Vancea, A. Sterca, D. Cojocar, R. Boian, A Model for
Efficient Session Object Management in Web Applications in Proceedings of the
Symposium “Colocviul Academic Clujean de Informatică” Cluj-Napoca, 2006, pp.
131-136;

[BB06b] F.M. Boian, R. Boian, A. Vancea, AMS: An Assignment Management System for
Professors and Students in Proceedings of the Symposium “Colocviul Academic Clu-
jean de Informatică” Cluj-Napoca, 2006, pp. 137-142;



SOME FORMAL APPROACHES FOR DYNAMIC LIFE SESSION MANAGEMENT 235

[FG99] R. Fielding, R. J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-
Lee, Hypertext Transfer Protocol – HTTP/1.1, RFC 2616, June 1999;

[WWW1] Improved Session Tracking, http://www.mojavelinux.com/blog/archives/2006/09/
improved session tracking/, September 2006;

[PA00] V. Paxson, M. Allman, Computing TCP’s Retransmission Timer, IETF RFC 2988,
November 2000;

[GS97] Charles M. Grinstead, J. Laurie Snell, Introduction to Probability, American Math-
ematical Society, July 1997;

[BV07] F. Boian, Al. Vancea, D. Bufnea, C. Cobârzan, A. Sterca, D. Cojocar, Sisteme de
operare, Editura Risoprint 2006, ISBN 973-751-220-0, 978-973-751-220-8.

(1) Babeş-Bolyai University
E-mail address: florin@cs.ubbcluj.ro

(2) Babeş-Bolyai University
E-mail address: bufny@cs.ubbcluj.ro

(3) Babeş-Bolyai University
E-mail address: vancea@cs.ubbcluj.ro

(4) Babeş-Bolyai University
E-mail address: forest@cs.ubbcluj.ro

(5) Babeş-Bolyai University
E-mail address: dan@cs.ubbcluj.ro

(6) Babeş-Bolyai University
E-mail address: rares@cs.ubbcluj.ro


