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Abstract. A new model based on the robust Ant Colony System (ACS) is
introduced. The proposed Sensitive ACS (SACS) model extends ACS using
the sensitive reaction of ants to pheromone trails. Each ant is endowed with a
pheromone sensitivity level allowing different types of responses to pheromone
trails. The SACS model facilitates a good balance between search exploitation
and search exploration. Both ACS and SACS models are implemented for
solving the NP-hard Generalized Traveling Salesman Problem. Comparative
tests illustrate the potential and efficiency of the proposed metaheuristic.

1. Introduction

Metaheuristics are good strategies in terms of efficiency and solution quality for
problems of realistic size and complexity. Regarded as strategic problem solving
frameworks, metaheuristics are widely recognized as one of the most powerful
approaches for combinatorial optimization problems. The most representative
metaheuristics include genetic algorithms, simulated annealing, tabu search and
ant colony [6].

The aim of this paper is to design a new metaheuristic based on Ant Colony
System (ACS) [3] for solving combinatorial optimization problems. The introduced
model is called Sensitive ACS (SACS) and uses different reactions of sensitive ants
to pheromone trails. This technique promotes both search exploitation and search
exploration for complex problems. The ACS and SACS models are implemented
for solving the Generalized Traveling Salesman Problem (GTSP) [7, 8]. Numerical
experiments indicate the potential of the introduced SACS model.

2. Ant Colony Systems

An ant algorithm is a system based on agents which simulate the natural be-
havior of ants including mechanisms of cooperation and adaptation. In [2] the
use of this kind of system as a new metaheuristic was proposed in order to solve
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combinatorial optimization problems. This new metaheuristic has been shown to
be both robust and versatile in the sense that it has been successfully applied to
a range of different combinatorial optimization problems.

Ant algorithms are based on the following main ideas:

• Each path followed by an ant is associated with a candidate solution for
a given problem.

• When an ant follows a path, the amount of pheromone deposited on
that path is proportional to the quality of the corresponding candidate
solution for the target problem.

• When an ant has to choose between two or more paths, the path(s) with
a larger amount of pheromone has(have) a greater probability of being
chosen by ants. As a result, ants eventually converge to a short path
which hopefully represents the optimum or a near-optimum solution for
the target problem.

Well known and robust algorithms include Ant Colony System (ACS) [3] and
MAX −MIN Ant System [10]. Ant Colony System (ACS) metaheuristics is a
particular class of ant algorithms. The insects behavior is replicated to search the
space. While walking between their ant nest and the food source, ants deposit a
substance called pheromone. In the future every ant can direct its search according
to the amount of this hormone on the ground.

3. The Generalized Traveling Salesman Problem

Let G = (V, E) be an n-node undirected graph whose edges are associated with
non-negative costs. Let V1, ..., Vp be a partition of V into p subsets called clusters.
The cost of an edge (i, j) ∈ E is c(i, j).

The generalized traveling salesman problem (GTSP) refers to finding a minimum-
cost tour H spanning a subset of nodes such that H contains exactly one node
from each cluster Vi, i ∈ {1, ..., p}. The problem involves two related decisions:
choosing a node subset S ⊆ V , such that |S ∩ Vk| = 1, for all k = 1, ..., p and
finding a minimum cost Hamiltonian in S (the subgraph of G induced by S).

Such a cycle is called a Hamiltonian tour. The GTSP is called symmetric if
and only if the equality c(i, j) = c(j, i) holds for every i, j ∈ V , where c is the cost
function associated to the edges of G.

The GTSP has several applications to location and telecommunication problems
[4, 5, 7].

4. Ant Colony System for solving GTSP

An Ant Colony System for solving the GTSP is introduced. Let Vk(y) denote
the node y from the cluster Vk. The ACS algorithm for solving the GTSP works
as follows.
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Initially the ants are placed in the nodes of the graph, choosing randomly the
clusters and also a random node from the chosen cluster

At iteration t + 1 every ant moves to a new node from an unvisited cluster and
the parameters controlling the algorithm are updated.

Each edge is labeled by a trail intensity. Let τij(t) is the trail intensity of the
edge (i, j) at time t. An ant decides which node is the next move with a probability
that is based on the distance to that node (i.e. cost of the edge) and the amount
of trail intensity on the connecting edge. The inverse of distance from a node to
the next node is known as the visibility, ηij = 1

cij
.

Each time unit evaporation takes place. This is to stop the intensity trails
increasing unbounded. The rate evaporation is denoted by ρ, and its value is
between 0 and 1.

To favor the selection of an edge that has a high pheromone value, τ , and high
visibility value, η a probability function pk

iu is considered. Jk
i are the unvisited

neighbors of node i by ant k and u ∈ Jk
i, u = Vk(y), being the node y from the

unvisited cluster Vk. This probability function is defined as follows:

(1) pk
iu(t) =

[τiu(t)][ηiu(t)]β

Σo∈Jk
i
[τio(t)][ηio(t)]β

,

where β is a parameter used for tuning the relative importance of edge cost in
selecting the next node. pk

iu is the probability of choosing j = u, where u = Vk(y)
is the next node, if q > q0 (the current node is i). q is a random variable uniformly
distributed over [0, 1] and 0 ≤ q0 ≤ 1. If q ≤ q0 the next node j is chosen as
follows:

(2) j = argmaxu∈Jk
i
{τiu(t)[ηiu(t)]β},

After each transition the trail intensity is updated using the local correction
rule:

(3) τij(t + 1) = (1− ρ)τij(t) + ρτ0.

Only the ant that generate the best tour is allowed to globally update the
pheromone. The global update rule is applied to the edges belonging to the best
tour. The correction rule is

(4) τij(t + 1) = (1− ρ)τij(t) + ρ∆τ(t),

where ∆τ(t) is the inverse cost of the best tour.
The ACS for GTSP algorithm shown in the following, computes for a given

time timemax a (sub-)optimal solution for the given problem.
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5. Proposed Sensitive Ant Colony System Model

The proposed Sensitive Ant Colony System (SACS) emphasizes a more robust
and flexible system obtained by considering that not all ants react in the same
way to pheromone trails. Within the proposed model, each ant is endowed with a
pheromone sensitivity level denoted by PSL which is expressed by a real number
in the unit interval [0, 1]. Extreme situations are:

• If PSL = 0 the ant completely ignores stigmergic information (the ant
is ’pheromone blind’);

• If PSL = 1 the ant has maximum pheromone sensitivity.
Small PSL values indicate that the ant will normally choose very high pheromone
levels moves (as the ant has reduced pheromone sensitivity). These ants are more
independent and can be considered environment explorers. They have the po-
tential to autonomously discover new promising regions of the solution space.
Therefore, search diversification can be sustained.

Ants with high PSL values will normally choose any pheromone marked move.
Ants of this category are able to intensively exploit the promising search regions
already identified. In this case the ant’s behavior emphasizes search intensification.

During their lifetime the ants may improve their performance by learning. This
process translates to modifications of the pheromone sensitivity. The PSL value
can increase or decrease according to the search space topology encoded in the
ant’s experience.

6. Sensitive Ant Colony System for solving GTSP

The proposed SACS model for solving GTSP is described. Two ant colonies
are involved. Each ant is endowed with a pheromone sensitivity level (PSL). Ants
of the first colony have small PSL values indicating that they normally choose
very high pheromone level moves. These sensitive-explorer ants are called small
PSL-ants (sPSL). They autonomously discover new promising regions of the so-
lution space to sustain search diversification. Ants of the second colony have high
PSL values. These sensitive-exploiter ants called high PSL-ants (hPSL) normally
choose any pheromone marked move. They intensively exploit the promising search
regions already identified by the first ant colony.

SACS for solving GTSP works as follows:
Step 1. Initially the ants are placed randomly in the nodes of the graph.
Step 2. At iteration t + 1 every sPSL-ant moves to a new node and the

parameters controlling the algorithm are updated. When an ant decides which
node is the next move it does so with a probability that is based on the distance
to that node and the amount of trail intensity on the connecting edge. At each
time unit evaporation takes place. This is to stop the intensity trails increasing
unbounded. In order to stop ants visiting the same node in the same tour a tabu
list is maintained. This prevents ants visiting nodes they have previously visited.
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To favor the selection of an edge that has a high pheromone value, τ , and high
visibility value, η a function pk

iu is considered. Jk
i are the unvisited neighbors of

node i by ant k and u ∈ Jk
i. pk

iu is the probability of choosing j = u as the next
node if q > q0 (the current node is i). If q ≤ q0 the next node j is chosen as in
Equation 2.

The sensitivity level is denoted by s and its value is randomly generated in
(0, 1). For sPSL ants s values are in (0, s0), where 0 ≤ s0 ≤ 1.

Step 3. The trail intensity is updated using the local rule as following.

(5) τij(t + 1) = s2 · τij(t) + (1− s)2 ·∆τ(t)
1
n

.

where n is the total number of the nodes.
Step 4. Step 2 and Step 3 are reconsidered by the hPSL-ant using the infor-

mation of the sPSL ants. For hPSL ants s values are randomly chosen in (s0, 1).
Step 5. Only the ant that generates the best tour is allowed to globally update

the pheromone. The global update rule is applied to the edges belonging to the
best tour. The correction rule is Equation 4.

A run of the algorithm returns the shortest tour found. In the SACS algorithm
for GTSP the implementation of the pheromone trail τ , in order to obtain more
qualitative results comparing to the ACS for GTSP is improved.

The description of the SACS algorithm for GTSP is shown in Algorithm 1.

Algorithm 1. Sensitive Ant Colony System for GTSP
begin
Set parameters, initialize pheromone trails
Loop

Place ant k on a randomly chosen node
from a randomly chosen cluster
Loop

Each sPSL-ant incrementally build a solution (1)(2)
A local pheromone updating rule (5)
Each hPSL-ant incrementally build a solution (1)(2)
A local pheromone updating rule (5)

Until all ants have built a complete solution
A global pheromone updating rule is applied (4)

Until end condition
end.
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7. Numerical Experiments

To evaluate the performance of the proposed model, the SACS algorithm for
solving GTSP has been compared to the ACS algorithm, the Nearest Neighbor
(NN) technique and the composite heuristic GI3 [9]. Problems from TSP library
[1] have been considered. TSPLIB provides optimal objective values for each of
the problems. Several problems with Euclidean distances have been considered.
Comparative results are shown in Table 2. To divide the set of nodes into subsets
the procedure proposed in [4] has been used. This procedure sets the number of
clusters [n/5], identifies the m farthest nodes from each other, called centers, and
assigns each remaining node to its nearest center.

The parameters used for both ant-based algorithms have been chosen as follows:
τ0=0.1, β = 5, m = 10, ρ = 0.05, q0 = 0.5.

Besides the settings inherited from ACS, the SACS algorithm for GTSP uses
an sensitivity parameter s0 = 0.5. The sensitivity level of hPSL ants is considered
to be distributed in the interval (s0, 1) while sPSL ants have the sensitivity level
in the interval (0, s0).

All the solutions of ACS and SACS for GTSP are the average of five successively
runs of the algorithm for each problem. Termination criteria is given by the
timemax the maximal computing time set by the user; in this case ten minutes.
Figure 1 shows comparative computational results for solving the GTSP using the
ACS, SACS, NN and GI3.

Figure 1. Comparative Standard Deviation Average values for
ACS, SACS, NN and GI3

The ACS algorithm for GTSP performes well finding good solution in many
cases. The test results clearly show that the newly introduced SACS algorithm
outperforms the basic ACS model and obtains better results for most problems
than those of the NN and GI3.
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Table 1. SACS algorithm for solving GTSP versus other algorithms

Problem Opt.val. NN GI3 ACS SACS

11EIL51 174 181 174 174 174
14ST70 316 326 316 316 316
16EIL76 209 234 209 209 209
16PR76 64925 76554 64925 64925 64925
20RAT99 497 551 497 497 497
20KROA100 9711 10760 9711 9711 9711
20KROB100 10328 10328 10328 10328 10328
20KROC100 9554 11025 9554 9554 9554
20KROD100 9450 10040 9450 9450 9450
20KROE100 9523 9763 9523 9523 9523
20RD100 3650 3966 3653 3650.4 3650
21EIL101 249 260 250 249 249
21LIN105 8213 8225 8213 8215.4 8213
22PR107 27898 28017 27898 27904.4 27899.2
22PR124 36605 38432 36762 36635.4 36619.2
26BIER127 72418 83841 76439 72420.2 72418
28PR136 42570 47216 43117 42593.4 42582.2
29PR144 45886 46746 45886 46033 45890
30KROA150 11018 11712 11018 11029 11021.2
30KROB150 12196 13387 12196 12203.6 12199.6
31PR152 51576 53369 51820 51683.2 51628.6
32U159 22664 26869 23254 22729.2 22693
39RAT195 854 1048 854 856.4 854
40D198 10557 12038 10620 10575.2 10562.2
40KROA200 13406 16415 13406 13466.8 13416.8
40KROB200 13111 17945 13111 13157.8 13127.4
45TS225 68345 72691 68756 69547.2 68473.6
46PR226 64007 68045 64007 64289.4 64131
53GIL262 1013 1152 1064 1015.8 1015.4
53PR264 29549 33552 29655 29825 29603.2
60PR299 22615 27229 23119 23039.6 22640.6
64LIN318 20765 24626 21719 21738.8 20846.8
80RD400 6361 7996 6439 6559.4 6417.4
84FL417 9651 10553 9697 9766.2 9731.8
88PR439 60099 67428 62215 64017.6 60571.6
89PCB442 21657 26756 22936 22137.8 21790.6
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8. Conclusions

A new ACS- based model called Sensitive Ant Colony System is introduced.
Within SACS ants are endowed with a pheromone sensitivity level. The proposed
model emphasizes a more aggressive exploration of the search space facilitating the
detection of promising search areas. The SACS algorithm is applied for solving
GTSP.

The computational results concerning the SACS algorithm are good and com-
petitive - in both solution quality and computational time - with the existing
heuristics from the literature [9]. Compared with the basic ACS model, the SACS
algorithm produces better results for many of the test cases used. The results can
be potentially improved by considering different parameters settings.
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