
KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2007
Cluj-Napoca (Romania), June 6–8, 2007, pp. 161–168

EXACT MODEL BUILDING IN HIERARCHICAL COMPLEX
SYSTEMS

DAVID ICLĂNZAN(1) AND DAN DUMITRESCU(2)

Abstract. The paper proposes a novel trajectory based method which opti-
mizes problems via explicit decomposition. The method is able to learn and
deliver the problem structure in a comprehensible form to human researchers.

1. Introduction

Complex systems are characterized by multiple interactions between many dif-
ferent components where local and global phenomena interact in complicated,
often nonlinear ways [6]. Researchers from different areas confront with them on
a daily basis. To successfully address large-scale problems in complex systems, a
proper problem decomposition must be employed.

A special type of complex systems are the hierarchical ones, where the system
is composed from subsystems, each of which is hierarchical by itself [7]. Many
systems around as are hierarchical. The successive levels used in physics are fa-
miliar to everyone: materials are composed of molecules, molecules are composed
of atoms, atoms are composed electrons, protons, neutrons and so forth.

Hierarchical problems derive from hierarchical complex systems. Their efficient
solving requires proper problem decomposition and assembly of solution from sub-
solution with strong non-linear interdependencies.

Pelikan and Goldberg [5] proposed the Hierarchical Bayesian Optimization Al-
gorithm (hBOA), one of the few methods which is able to optimize problems with
random linkages. hBOA can optimize problems which are not fully decomposable
in one single level by hierarchical decomposition. Nevertheless, the decomposition
information is implicitly stored in a Bayesian network which do not reveal the
problem structure in a comprehensible form.

In a very recent development Yu and Goldberg [12] proposed an explicit hier-
archical decomposition scheme for GAs. The method uses dependency structure
matrix clustering techniques for linkage detection and it is able to approximately

2000 Mathematics Subject Classification. 68T20, 49M27, 91E40.
Key words and phrases. Problem Decomposition, Linkage Learning, Model Building.

c©2007 Babeş-Bolyai University, Cluj-Napoca

161



162 DAVID ICLĂNZAN(1) AND DAN DUMITRESCU(2)

capture the underlying problem structure. The inaccuracies are mainly caused by
the intrinsic probabilistic nature of the algorithm.

In this paper we propose the Building Block Wise Greedy Search Algorithm
(BBWGSA), a more systematic approach which can exactly capture the problems
anatomy. The proposed method operates on a single point -instead of populations-
and uses an explicit hierarchical decomposition scheme based on a greedy search
operator which performs local search among competing building blocks (BBs)
neighborhood. The search experience accumulated is used to reveal linkages and
to update the BB structure.

The rest of the paper is organized as follows. Section two revisits and formally
presents hierarchical problems. The third section describes the proposed method.
Experiments and results are presented in section four. The paper is concluded
with discussion and some outlines for future work in chapter five.

2. Hierarchical Difficulty and Hierarchical Problems

Although having a gross-scale BB structure, hierarchical problems are hard to
solve without proper problem decomposition as the blocks from these functions
are not separable.

The fundamental of hierarchically decomposable problems is that there is always
more than one way to solve a (sub-) problem [9] leading to the separation of BBs
“fitness” i.e. contribution to the objective function, from their meaning. This
conceptual separation induces the non-linear dependencies between BBs: providing
the same objective function contribution, a BB might be completely suited for one
context whilst completely wrong for another one.

Hierarchical problems are very hard for mutation based hill-climbers as they
exhibit a fractal like structure in the Hamming space with many local optima [11].
This bit-wise landscape is fully deceptive; the better is a local optimum the further
away is from the global ones. At the same time the problem can be solved quite
easily in the BB or “crossover space”, where the block-wise landscape is fully non
deceptive [9]. The forming of higher order BBs from lower level ones reduces the
problem dimensionality.

If a proper niching is applied and the promising sub-solutions are kept until
the method advances to upper levels where a correct decision can be made, the
hierarchical difficulty can be overcome.

2.1. Design of hierarchical problems. In this paper two hierarchical test func-
tions are considered: the hierarchical IFF [9] and the hierarchical XOR [10]. These
problems are defined on binary strings of the form {0, 1}kp

where k is the number
of sub-blocks in a block, and p is the number of hierarchical levels. The meaning
of sub-blocks is separated from their fitness by the means of a boolean function
h which determines if the sub-block is valid in the current context or not. In



EXACT MODEL BUILDING IN HIERARCHICAL COMPLEX SYSTEMS 163

the shuffled version of these problems the tight linkage is disrupted by randomly
reordering the bits. The functions are detailed as follows.

2.1.1. Hierarchical if and only if (hIFF). The hIFF has k = 2 and it is provided
by the if and only if relation, or equality. Let L = x1, x2, . . . , x2p−1 be the first half
of the binary string x and R = x2p−1+1, x2p−1+2, . . . , x2p the second one. Then h
is defined as:

(1) hiff (x) =





1 , if p = 0;
1 , if hiff (L) = hiff (R) and L = R;
0 , otherwise.

Based on hiff the hierarchical iff is defined recursively:

(2) Hiff (x) = Hiff (L) + Hiff (R) +
{

length(x) , if hiff (x) = 1;
0 , otherwise.

At each level p > 0 the Hiff (x) function rewards a block x if and only if the
interpretation of the two composing sub-blocks are both either 0 or 1. Otherwise
the contribution is zero.

hIFF has two global optima: strings formed only by 0’s or only by 1’s. At the
lowest level the problem has 2l/2 local optima where l is the problem size.

2.1.2. Hierarchical exclusive or (hXOR). The global optima of hIFF are formed
by all 1’s or all 0’s which may ease the task of some methods biased to a particular
allele value. To prevent the exploitation of this particular problem property the
hXOR was designed.

The definition of hXOR is analogous with the hIFF, having only a modification
in the validation function h, where instead of equality we do a complement check.

(3) hxor(x) =





1 , if p = 0;
1 , if hxor(L) = hxor(R) and L = R̄;
0 , otherwise.

The R̄ stands for the bitwise negation of R.

3. Systematic Exploitation of the Building Block Structure

As already indicated in Section 2, hierarchical problems are fully deceptive in
Hamming space and fully non deceptive in the BB space. The problem representa-
tion together with the neighborhood structure defines the search landscape. With
an appropriate neighborhood structure, which operates on BBs, the search prob-
lem can be transferred from Hamming space to a very nice, fully non deceptive
search landscape which should be easy to systematically exploit (ex. hill-climb).

Usually hill-climbers described in the literature use bit-flipping for replacing the
current state [1, 2, 3]. This implies a neighborhood structure which contains strings
that are relatively close in Hamming distance to the original state, making those



164 DAVID ICLĂNZAN(1) AND DAN DUMITRESCU(2)

methods unsuited for solving hierarchical problems, where local optima and global
optima are distant in Hamming space. But the neighborhood can be defined as an
arbitrary function which assign to a valid state s a set of valid states N(s). The
main idea of the paper is to build a trajectory method which takes into account the
BB structure of the problems and defines its neighborhood structure accordingly.

3.1. Adaptation of the neighborhood structure. Theoretical studies denote
that a GA that uses crossover which does not disrupts the building block structure
holds many advantages over simple GA [8].

Similarly, in order to be able to efficiently exploit the BB landscape, the pro-
posed method must learn the problem structure and evolve the solution represen-
tation to reflect the current BB knowledge. The changing of representation implies
the adaptation of the neighborhood structure which is the key to conquer hierar-
chical problems: by exploring the neighborhood of the current BB configuration
the next level of BB can be detected.

In order to be able to identify linkages we enhance our method with a mem-
ory where hill-climbing results are stored. Evolutionary Algorithms with linkage
learning mechanism extracts the BB information from the population. Similar
techniques can be applied to devise BB structures from the experience stored in
the memory. However, the solutions stored by the proposed method offer an im-
portant advantage over populations: they are noise free. While individuals from
populations may have parts where good schemata’s have not yet been expressed or
have BBs slightly altered by mutation, the solution stored in memory are always
exact local optima. In the case of fully non deceptive BB landscapes the system-
atic exploration of BB configurations guarantees that in the close neighborhood of
these states there are no better solutions.

3.2. Building Block Wise Greedy Search Algorithm. The proposed method
involves three main steps: (i) hill-climbing the search space according to a BB
neighborhood structure; (ii) local optima obtained in (i) are used to detect link-
ages and extract BB information; (iii) the BB configuration and implicitly the
neighborhood structure are updated.

3.2.1. The Greedy Search Algorithm. BB hill-climbing is rather straightforward:
instead of flipping bits, the search focuses on the best local BB configuration.
Each BB is processed systematically by testing its configurations and selecting the
one which provides the highest (or lowest in the case of minimization) objective
function value. While the best configuration of a particular BB is searched, the
configurations of the other BBs are hold still.

The individual is represented as a sequence of BBs: s = (b1, b2, . . . , bn) where
n is the number of BBs. Each BB bi can represent multiple configurations:
Vi = {v|v ∈ {0, 1}l} where l is the length of bi. This allow the sustenance and
parallel processing of competing schemata.



EXACT MODEL BUILDING IN HIERARCHICAL COMPLEX SYSTEMS 165

1. Choose randomly a building block bi from s which has not yet
been clustered;
2. Let L be the set of building blocks whose configuration from
the memory are mapped bijectively to bi;
3. If L is empty update the possible configurations Vi to the
configurations encountered in the memory;
4. If L is not empty form a new building block new b = bi

⋃
L by

setting the loci it’s define to the union of loci from bi and the
building blocks from L. Also set the possible values Vnew b to all
distinct configuration encountered, on the position defined by the
new b , operating on the binary representation of states from the
memory;
5. Set bi

⋃
L as clustered;

6. If there exists building blocks which have not been clustered
goto 1 ;

Figure 1. The linkage detection and new building block forming method.

3.2.2. Linkage Detection. Several techniques for detecting gene dependency from
a population have been already presented in the literature [4, 12] which could be
also employed by the proposed method. But due to the fact that the hierarchical
problems under study are fully non deceptive in the BB space, a very simple
method for linkage detection is considered. This process is facilitated by the
advantage of having noise free states stored in memory.

The clustering of loci in new BBs is done by searching for bijective mappings.
For a given block bi, all BBs bj are linked if distinct configurations of bi map to
distinct configurations of bj . The configurations of bi that can be found in the
memory represent the domain while the configurations of bj from the memory are
the codomain.

Due to the transitivity property of bijective mappings (functions) all relevant
BBs are discovered simultaneously. The linkage detection algorithm is presented
in Figure 1. Harder problems (exhibiting overlapping BB structure for example),
may require a more sophisticated linkage learning method.

All BBs linked together by a bijective mapping will form a new BB which
replaces the linked loci in the BB structure. The possible configurations of the
new BBs are extracted from the binary representation of states from the memory.
All distinct configurations from the positions defined by the composing BBs are
taken into account. If a BB can not be linked with any other BB it keeps its
original place and only its possible configurations are updated in the same manner
as the new BBs.

Proposed model can be summarized by the algorithm presented in Figure 2.



166 DAVID ICLĂNZAN(1) AND DAN DUMITRESCU(2)

1. Generate a random state s from the current BB structure;
2. BB cill-climb from s and store the result in memory;
3. If the resulted state is better then the best states seen so
far, keep the new state;
4. If the memory is not filled up goto 1 ;
5. Learn linkage from memory and update the BB configuration
according to the detected linkages;
6. Empty memory;
7. If termination condition not met goto 1 ;

Figure 2. Outline of the hill-climbing enhanced with memory
and linkage learning. In steps 1-4 we accumulate the search ex-
perience (phase 1) which is exploited in steps 5-7 (phase 2).

4. Results

Enhanced with linkage learning mechanism and variable neighborhood structure
the BBWGSA should be able to efficiently solve relevant problems by hierarchical
decomposition. Also due to the more systematic approach of the BBWGSA we
expect it to deliver uncorrupted problem structure.

We tested these hypothesis on the 128-bit, 256-bit shuffled hIFF and hXOR
problems. The memory size was set to 30 on the case of the 128-bit version
respectively to 40 on the 256-bit one. 25 independent runs were performed on
both test suits. The BBWGSA was able to find one of the global optima in all
cases. More important it detected the perfect problem structure (complete binary
tree) in all runs! In Figure 3 we depict the performance of the DSGMA++ on
a small test suit as reported in [12]. Albeit the problem structure is quite well
approximated it contains some inaccuracies which on bigger problem instances
may be problematic.

Similarly to other methods like the DSMGA++, the BBWGSA uses explicit
chunking mechanism enabling the method to deliver the problem structure. While
DSGMA++ and other stochastic methods have to fight the sampling errors which
sometimes induce imperfections, the BBWGSA was able to detect the perfect prob-
lem structure in all runs, due to its more systematic and deterministic approach.
The enhanced capability of BBWGSA to capture the problem structure is also
revealed by the fact that hIFF and hXOR are solved approximately in the same
number of steps as their underlying BB structures (complete binary tree) coincide.
However for the DSGMA++ the time needed to optimize the two problems differs
significantly, being O(l1.84 log(l) for the hIFF and O(l1.96 log(l) on hXOR.

On hIFF and hXOR the multiple runs of the BBWGSA showed an unbiased
behavior, finding in almost half-half proportion both global optima.



EXACT MODEL BUILDING IN HIERARCHICAL COMPLEX SYSTEMS 167

Figure 3. Example of problem structure obtained by the
DSMGA++ for the hXOR function with 4 levels (chromosome
length= 24 = 16) as reported in [12]. The nodes represents genes
of chromosomes. The number of circles represents the compres-
sion level. The descriptions on the right show the generation
number and the chromosome length. The ideal case would be a
complete binary tree with 4 layers.

A final remark concerns the stability of BBWGSA: the highest standard de-
viation encountered is 196 while other methods deal with standard deviations of
much higher magnitude on the same test suites.

5. Conclusions

The Building Block Wise Greedy Search Algorithm (BBWGSA), a generic
method for solving problems via hierarchical decomposition is proposed. The
BBWGSA operates in the BB space where it combines BBs in a systematic and
exhaustive manner. Exploration experience is used to learn the underlying BB
structure of the search space expressed by linkages.

A very important aspect of the proposed method is that similar to DSMGA++,
BBWGSA delivers the problem structure in a form comprehensible to humans.
Gaining knowledge about the hidden, complex problem structure can be very use-
ful in many real-world applications. Nevertheless, by adopting a more systematic
approach, the proposed method was able to detect the perfect problem structure
in all runs.

In the future we would like to enhance our method with more powerful linkage
learning techniques in order to be able to tackle more difficult problem structures.



168 DAVID ICLĂNZAN(1) AND DAN DUMITRESCU(2)

6. Acknowledgments

This work was supported by the CNCSIS, AT-70 / 2006 grant and the Sapientia
Institute for Research Programs (KPI).

References

[1] S. Forrest and M. Mitchell. What makes a problem hard for a genetic algorithm? some
anomalous results and their explanation. MACHLEARN: Machine Learning, 13, 1993.

[2] M. Mitchell, S. Forrest, and J. H. Holland. The royal road for genetic algorithms: Fitness
landscapes and GA performance. In F. J. Varela and P. Bourgine, editors, Proc. of the First
European Conference on Artificial Life, pages 245–254, Cambridge, MA, 1992. MIT Press.

[3] H. Mühlenbein. How genetic algorithms really work: I. mutation and hillclimbing. In
R. Männer and B. Manderick, editors, Proceedings of the Second Conference on Parallel
Problem Solving from Nature (PPSN II), pages 15–25, Amsterdam, 1992. North-Holland.

[4] M. Pelikan. Bayesian optimization algorithm: from single level to hierarchy. PhD thesis,
2002. Adviser-David E. Goldberg.

[5] M. Pelikan and D. E. Goldberg. Escaping hierarchical traps with competent genetic algo-
rithms. In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen,
M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, editors, Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2001), pages 511–518, San Francisco,
California, USA, 7-11 2001. Morgan Kaufmann.

[6] D. Rind. Complexity and climate. Science, 284(5411):105–107, April 1999.
[7] H. A. Simon. The Sciences of the Artificial. MIT Press, Cambridge, Massachusetts, first

edition, 1969.
[8] D. Thierens and D. E. Goldberg. Mixing in genetic algorithms. In Proceedings of the 5th

International Conference on Genetic Algorithms, pages 38–47, San Francisco, CA, USA,
1993. Morgan Kaufmann Publishers Inc.

[9] R. A. Watson, G. S. Hornby, and J. B. Pollack. Modeling building-block interdependency.
Lecture Notes in Computer Science, 1498:97–108, 1998.

[10] R. A. Watson and J. B. Pollack. Hierarchically consistent test problems for genetic algo-
rithms: Summary and additional results. In S. Brave and A. S. Wu, editors, Late Breaking
Papers at the 1999 Genetic and Evolutionary Computation Conference, pages 292–297,
Orlando, Florida, USA, 13 July 1999.

[11] R. A. Watson and J. B. Pollack. Symbiotic composition and evolvability. In J. Kelemen
and P. Sosik, editors, Advances in Artificial Life, 6th European Conf., (ECAL 2001), pages
480–490, Berlin, 2001. Springer.

[12] T.-L. Yu and D. E. Goldberg. Conquering hierarchical difficulty by explicit chunking: sub-
structural chromosome compression. In GECCO ’06: Proceedings of the 8th annual con-
ference on Genetic and evolutionary computation, pages 1385–1392, New York, NY, USA,
2006. ACM Press.

(1) Babe s-Bolyai University, Faculty of Mathematics and Computer Science,
Str. Mihail Kogălniceanu nr. 1, 400084, Cluj-Napoca, România

E-mail address: david.iclanzan@gmail.com

(2) Babe s-Bolyai University, Faculty of Mathematics and Computer Science,
Str. Mihail Kogălniceanu nr. 1, 400084, Cluj-Napoca, România

E-mail address: ddumitr@cs.ubbcluj.ro


