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Abstract. To avoid some usual difficulties of standard evolutionary algo-
rithms recently a new multimodal optimization metaheuristics - called Ge-
netic Chromodynamics (GC) - has been proposed. Based on the GC meta-
heuristics a new dynamic evolutionary clustering technique (GCDC) has been
developed. Some applications of GCDC are presented. GCDC is used for
gene expression analysis. A GCDC-based method for designing optimal neu-
ral network topologies is also presented.

Evolutionary algorithms represent ideal tools for solving difficult optimization
problems [3]. Several optimization problems for which classical methods do not
work very well or are simply inapplicable can be solved with evolutionary tech-
niques. Evolutionary algorithms can be used for constrained, dynamic, multiob-
jective and multimodal optimization.

Standard evolutionary algorithms find only one solution, even if the search space
is a highly multimodal domain. In order to identify several optimum points special
evolutionary models have been proposed. In some cases classical evolutionary
multimodal optimization methods, like niching techniques, cannot focus the search
on each optimum and find the optimal solutions efficiently.

To avoid some usual difficulties of these standard algorithms recently a new mul-
timodal optimization metaheuristics - called Genetic Chromodynamics (GC) - has
been proposed [4]. The model may be used to solve real- world optimization prob-
lems including static and dynamic multimodal and multiobjective optimization
problems. GC-based techniques can be applied in various scientific, engineering or
business fields. Clustering, learning from data, data compression and other data
mining problems are very suitable for a GC treatment.

Based on the GC metaheuristics a new clustering technique - called GC-based
Dynamic Clustering (GCDC) - has been proposed [7]. Dynamic clustering is a
typical multi-modal optimization problem. The problem of cluster optimization is
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twofold: optimization of cluster centers and determination of number of clusters.
The latter aspect has often been neglected in standard approaches (static cluster-
ing methods) (see [12, 13]), as these typically fix the number of clusters a priori.
In case of practical problems the number of existing clusters is generally unknown.
Dynamic clustering does not require a priori specification of the number of clus-
ters. GC-based clustering can be particularly useful to detect the optimal number
of clusters in a data set and the corresponding set of useful prototypes [7].

Clustering is a useful exploratory tool in gene expression data, however there
are only a few works that deal with the problem of automatically estimating the
number of clusters in bioinformatics datasets. GCDC is capable of automatically
discovering the optimal number of clusters and its corresponding optimal partition
in gene expression datasets.

Solving a problem with a neural network a primordial task is the determina-
tion of the network topology. Generally the determination of the neural network
topology is a complex problem and cannot be easily solved. When the number of
trainable layers and processor units (neurons) is too low, the network is not able
to learn the proposed problem. If the number of layers and neurons is too high
then the learning process becomes too slow. The main aim is designing optimal
topology. In some cases complexity of networks can be reduced by clustering the
training data.

In Section 1 the GC metaheuristics and the GC-based dynamic clustering tech-
nique are presented. In Section 2 GCDC is used for gene expression analysis.
A method for designing optimal RBF neural network topologies using GCDC is
presented in Section 3. Some numerical experiments are also described.

1. GC-based dynamic clustering

Genetic Chromodynamics (GC) [4] is a new kind of evolutionary search and
optimization metaheuristics. GC is a metaheuristics for maintaining population
diversity and for detecting multiple optima. The main idea of the strategy is to
force the formation and maintenance of stable sub-populations.

GC-based methods use a variable-sized population, a stepping-stone search
mechanism, a local interaction principle and a new operator for merging very
close individuals.

Corresponding to the stepping-stone technique each individual in the population
has the possibility to contribute to the next generation and thus to the search
progress. Corresponding to the local interaction principle the recombination mate
of a given individual is selected within a determined mating region. Only short
range interactions between solutions are allowed. Local mate selection is done
according to the values of the fitness function. An adaptation mechanism can be
used to control the interaction range, so as to support sub-population stabilization.
Within this adaptation mechanism the interaction radius of each individual could
be different.
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To enhance GC, micropopulation models can be used. Corresponding to these
models, for each individual a local interaction domain is considered. Individuals
within this domain represent a micropopulation. All solutions from a micropop-
ulation are recombined using local tournament selection. When the local domain
of an individual is empty the individual is mutated.

Within GC sub-populations co-evolve and eventually converge towards several
optima. The number of individuals in the current population usually changes with
the generation. A merging operator is used for merging very close individuals.
At convergence, the number of sub-populations equals the number of optima.
Each final sub-population hopefully contains a single individual representing an
optimum, a solution of the problem.

GC allows any data structure suitable for the problem together with any set of
meaningful variation/search operators. For instance solutions may be represented
as real-component vectors. Moreover the proposed approach is independent of the
solution representation.

Based on the GC metaheuristics a new dynamic clustering algorithm - called
GCDC - has been developed. This technique is described below.

1.1. Solution representation. Corresponding to the proposed GCDC method
each cluster is represented by a prototype (cluster center). Each prototype is
encoded into a chromosome. The initial population is randomly generated and it
contains a large number of individuals.

1.2. Interaction domain. For realizing the local interaction principle, an inter-
action domain (mating region) is considered for each individual in the population
(a chromosome representing a prototype). To support subpopulation stabilization
an adaptation mechanism is used for controlling interaction domains [9]. For re-
alizing the stepping-stone search principle a micropopulation model is used and it
is combined with direct survival competition.

1.3. Search operators. The crossover operation can be a convex combination of
the parent genes. A randomly generated number for each gene can be considered
as combination coefficient. An additive perturbation of genes with a randomly
chosen value from a normal distribution N(0,σ), where σ is a control parameter
called mutation step size can be considered as mutation operator.

1.4. Fitness evaluation. Fitness values of individuals are evaluated using suit-
able fitness functions. For instance Gaussian functions could be used (see [7, 9]).

The set of input samples X = {x1, ..., xn} is considered. Cluster structure cor-
responding to this input data set is given by a set of prototypes L = {L1, ..., Lm},
represented by chromosomes. Fitness of a chromosome Lj is calculated using the
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following Gaussian fitness function:

g (Lj) =
n∑

i=1

e
−‖xi−Lj‖2

γ2
j .

Parameters of corresponding normal distribution are Lj and γj . An adaptation
mechanism is used for controlling parameter γj , j = 1, ..., m. In this way a dynam-
ical adaptation of the fitness function is realized.

1.5. Improving GCDC. To achieve a better performance final merging and a
post-processing methods can be performed [10]. A Link-Cell method can be ap-
plied for improving GCDC by promoting local search and deriving new parameter
adaptation techniques [11].

2. GCDC for gene expression analysis

Gene expression analysis is of great importance in molecular biology for inferring
the functions and structures of a cell since changes in the physiology of an organism
are accompanied by changes in the pattern of gene expression.

Gene expression is the process by which a gene’s coded information is converted
into the structures and functions of a cell. Expressed genes include those that are
transcribed into mRNA. The amount of protein that a gene expresses depends on
the tissue, the developmental stage of the organism and the metabolic or physio-
logic stage of the cell. By capturing the cell expression level, biologists can build
up a picture of what levels of gene expression may be normal, or abnormal, and
what the relative expression levels are between different genes within the same cell
[1, 2].

DNA microarray, a recently developed technology, allows thousands of gene
expression levels to be measured simultaneously. Data collected by this method is
called gene expression data, which after preprocessing (reduction of the noise-level
and normalization), forms the data source of our clustering algorithms.

The main characteristics of gene expression data is the very high number of
genes (up to 106), and the generally small number of samples (< 100). Thus
gene expression data is usually represented by a real-valued matrix whose rows
correspond to genes and whose columns correspond to conditions, experiments or
time points. An element of the matrix represents the expression level of a specific
gene under a specific condition.

2.1. Clustering gene expression data. Clustering is a fundamental and widely
used technique in data analysis and pattern discovery aimed at a better under-
standing of gene structure, function and regulation. During clustering genes are
systematically grouped together according to their similarity in expression pat-
terns. Performing cluster analysis on gene expression data can help detecting gene
groups with similar expression patterns, determining the function of new genes,
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finding correlation between different groups, understanding gene regulation and
cellular processes, observing gene expression differentiation in various diseases or
drug treatments, thus digging out biologically meaningful information from genetic
data. Multi-gene expression patterns could characterize diseases and lead to new
precise diagnostic tools capable of discriminating different kinds of cancers [2].

The desired features of data analysis techniques dealing with gene expression
data are robustness, understandability, fastness and automatic detection of the
optimal cluster-number. The key challenges regarding gene clustering are the de-
velopment of methods that can extract order across experiments in typical datasets
of size 30000 x 1000, methods which can deal with highly connected, intersecting
or even embedded clusters. Boundaries between clusters can be very noisy. There
is a need for algorithms that handle effectively these problems.

Several classical clustering and classification algorithms have been applied to
gene-expression data from k-means to hierarchical clustering, principal compo-
nent analysis, factor analysis, independent component analysis, self-organizing
maps, decision trees, neural networks, support vector machines, graph-theoretic
approaches, and Bayesian networks to name a few. Each method has different
advantages depending on the specific task and specific properties of the data set
being analyzed. Typically, simpler methods are more robust, while the advanced
approaches provide more accurate results [5, 2].

In most clustering methods setting the number of clusters beforehand is nec-
essary; however, the choice of the number K of clusters is a delicate issue, and
only a few works deal with the automatic estimation of the number of clusters in
bioinformatics datasets.

2.2. Numerical experiments. We have chosen a data set for which a biologically
meaningful partition into classes is known in the literature. We refer to that
partition as the true solution.

RCNS data set [14] contains the expression levels of 112 genes during rat central
nervous system development over 9 time points. According to Wen et al. the
true partition of this data set contains 6 classes, four of which are composed of
functionally related genes. In order to capture the temporal nature of the data,
the difference between the values of two consecutive data points is added as an
extra data point. Therefore, the final data set consists of a 112 x 17 data matrix.
This transformation enhances the similarity between genes.

The GCDC technique provides an optimal clusters-center set containing usually
from 5 to 8 solutions; however, the most frequently appearing cluster number is 6.

The slight differences in result sets after multiple runs of the algorithms are
due to the stochastic nature of the method. The use of random numbers to pick
crossover and mutation locations embed stochastic processes into the algorithm.
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Figure 1 shows the average normalized expression pattern over the 9 time points
for all the genes in each cluster. These plots are very similar for multiple runs of
the algorithm; however the starting dominant ancestor might be different.

Figure 1. Average normalized expression pattern over the 9 time
points for all the genes in each cluster. The numbers above each
graph represent the indices of the starting dominant ancestors of
the different clusters.

The partition retrieved by the algorithm does not correspond entirely to the
original partition found by Wen et al., however it also makes sense. It finds a
refinement of some initial classes, while others are grouped together. In all cases
genes clustered in the same class share similar expression patterns, and a biological
interpretation of the classification is also possible.

3. GCDC for designing RBF neural networks

Radial Basis Function (RBF) networks are relatively simple neural networks,
especially used for solving interpolation problems [6]. RBF is a feed-forward neural
network with an input layer (made up of source nodes: sensory units), a single
hidden layer and an output layer. Within RBF networks there is a dependence
between the number of training samples and the number of hidden neurons.

Complexity of RBF networks depends on the number of hidden neurons. This
complexity can be reduced by clustering the training data. The number of hidden
neurons supplies the number of radial basis functions with different centers. It
should be favorable the use of training samples as RBF centers, but in some
cases this is impossible. If the number of training samples is high, then not all
of them might be used (the number of hidden processor units must be reduced).
The solution is to consider a single neuron for a group of similar training points.
Groups of similar training points can be identified by using clustering methods.

GCDC does not require a priori specification of the number of clusters. There-
fore GCDC can be used for designing optimal RBF neural network topologies
[8].

The number of neurons in the hidden layer of the network is the number of
clusters determined by the GCDC method. Cluster centers identified by the GCDC
algorithm are used as center parameters for the activation functions. RBF function
parameters can be determined according to the cluster diameters. In this way
optimal RBF neural network topology can be obtained.
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For investigating the performance of the GCDC method a numerical experiment
is performed. RBF neural network is used for approximating the function:

F2(x) = 2 · sin
(
ln(x) · ecos( x

2 )
)

,

where 0 ≤ x ≤ 9.5.

Figure 2. 200 training samples organized in 50 clusters, centers
determined by the GCDC technique, output of the RBF network
after 10000 training epochs.

The network is trained using 10 data sets. Each training set consists of 200
points from the interval [0,9.5]. In each set the points are organized in 50 well-
separated clusters. For each set the GCDC method is performed and RBF neural
network topologies are created based on the returned results. In 5 cases the number
of centers determined by GCDC is 50. In other 5 cases there is a little difference
(maximum +4). The generalization error is calculated using M = 400 inputs
(that do not belong to the training set) from the interval [0,9.5]. After training the
obtained RBF networks, the mean generalization error is 0.539953496. Satisfactory
approximation results are obtained (Figure 2).

The GCDC method has been compared with standard (static) clustering meth-
ods. Better results were obtained by using GCDC.

4. Conclusions

Genetic Chromodynamics (GC) a new evolutionary optimization metaheuristics
aimed for addressing static and dynamic multimodal and multiobjective optimiza-
tion problems is described.
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A GC-based clustering technique - called GCDC - is proposed. GCDC is used
for gene expression analysis and for designing RBF network topology. Numerical
experiments indicate the potential of the proposed approach.
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