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Abstract. The blood contains plasma, a Newtonian fluid, and other sus-
pended elements like red blood cells (erythrocytes), white blood cells (leuko-
cytes) and platelets. These components, particularly red blood cells, strongly
influence the blood properties and behaviour. A mathematical model is pro-
posed to solve problems like the flow in a microcapillary network that in-
cludes the blood rheology and non-linear cell splitting at bifurcations. This
model can be used to perform statistical studies on real microcapillary net-
works. The introduced model facilitates the characterization and prediction
of events and behaviours unreachable with standard tools.

1. Introduction

Due to their different structures, microcapillaries and veins have different bio-
logical properties. In the case of a vein being destroyed, it can be replaced with an
artificial one. However, this procedure can not be applied for a microcapillary. For
this reason a representation of microcapillary networks that allows predictions and
statistical studies is needed. A method based on random graphs for generating
microcapillary networks is proposed. The resulting network is compared with a
real microcapillary network. These results can be used to analyze microcapillary
networks around the brain or around tumors. Furthermore, prediction of events
and behaviours is enabled. For example, the proposed method can predict which
network is vulnerable emphasizing that damaging the network or portions of it
can be fatal.

2. Mathematical Model of a Microcapillary Network

Let us denote by V, I, O, and N the sets of microvessels, inlet, outlet and
interior nodes. In order to construct a microcapillary network, information about
each vessel of uniform radius Rj and length Lj , with j ∈ V is needed. Also, the
inlet and outlet pressures should be known since the flow is driven by the overall
pressure drop (i.e. the difference between the inlet and outlet pressures). Using
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network parameters and the Network Solver Algorithm (presented in Section 2.4),
the hematocrit in each link, pressures and flow rates distribution in the network
can be determined. This actually refers to the way in which the blood moves
into the network from the input nodes to the output nodes. An oriented weighted
graph can be used to capture structural information about such a network.

2.1. Hematocrit-dependent viscosity. The blood viscosity reflects the prop-
erty of the blood/vessel system for given flow conditions rather than solely the
property of the blood itself. This viscosity is called the “apparent” or “effective”
viscosity and depends strongly on the hematocrit and diameter of the vessel. This
dependence is known as the F̊ahræus-Lindqvist effect (see for instance [1]).The
proposed model relies on the in vivo viscosity law, provided by Pries [1], which is
derived from direct viscosity measurements:

(1) µj(Hj(x, t)) = µp · µrel
j , j ∈ V,

where

(2) µrel
j =

[
1 +

(
µ∗j − 1

) (1−Hj(x, t))Cj − 1

(1− 0.45)Cj − 1

(
2R̄j

2R̄j − 1.1

)2
] (

2R̄j

2R̄j − 1.1

)2

,

(3) µ∗j = 6 exp
(−0.17R̄j

)
+ 3.2− 2.44 exp

(−0.06(2R̄j)0.645
)
,

and

(4) Cj =
(
0.8 + exp(−0.15R̄j)

) (
−1 +

1
1 + 10−11(2R̄j)12

)
+

1
1 + 10−11(2R̄j)12

.

In the above equations, µj is the effective blood viscosity, µp is the plasma
viscosity (4× 10−3 Pa · s), and Cj , µ

∗
j , µ

rel
j are fitting coefficients which depend on

the vessel radius and hematocrit - the proportion of blood occupied by red blood
cells is referred to as the hematocrit.

2.2. Poiseuille law. The blood flow rate Qj is given by the Poiseuille law (see
[1]), under the assumption that the vessels are long and thin (lubrication theory).
Hence, the blood flow rate is related at the pressure drop ∆Pj along the jth vessel
by

(5) Qj = σj∆Pj ,

where

(6) σj =
πR4

j

8Ljµj(Hj , Rj)
,

and Lj is the length of the jth vessel.
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2.3. Boundary conditions at bifurcations. An important characteristic of the
microcirculation is the non-uniform distribution of the blood components between
the outgoing vessels at the splitting nodes. In particular, the higher the fraction
of blood an outgoing vessel receives, the higher the hematocrit in that vessel.
Hence, it is possible for one branch to receive a higher hematocrit than that of
the parent vessel and the other to receive a lower (possibly zero) hematocrit. This
phenomenon is called “plasma skimming” or “phase separation” [1].

In what follows, the parametric description of phase separation in vivo, proposed
by Pries et al [1] is used. This model was obtained by fitting in vivo experimental
data.

For any splitting node k, k ∈ N , connecting the incoming vessel Fk and outgo-
ing vessels αk and βk, with Fk, αk, βk ∈ V, mass conservation implies

(7) QFk
= Qαk

+ Qβk
.

The fractional hematocrits of the outgoing vessels are

(8)
Hαk

HFk

=
1

Qk





Fα(Qk), X0k
< Qk < 1 + X0k

0, Qk ≤ X0k

1, Qk ≥ 1 + X0k

with Qk = Qαk
/QFk

. The functions Fα(Qk) and Fβ(Qk) are given by

(9) Fα(Qk) =
1

1 + exp [−Aαk
−Bk log (G(Qk))]

,

(10) Fβ(Qk) =
1

1 + exp [−Aβk
−Bk log (G(Qk))]

,

where

(11) G(Qk) =
Qk −X0k

1−Qk −X0k

.

Likewise Hβk
/HFk

satisfies (8) with Qk replaced by 1−Qk and Fα by Fβ .
The parameters Aαk

, Aβk
, Bk and X0k

define the main aspects of the phase
separation (i.e. asymmetry, sigmoidal shape and threshold):

(12) Aαk
= − 6.96

2R̄Fk

ln
(

R̄αk

R̄βk

)
, Aβk

= − 6.96
2R̄Fk

ln
(

R̄βk

R̄αk

)
,

(13) Bk = 1 + 6.98
(

1−HFk

2R̄Fk

)
, X0k

=
0.2
R̄Fk

.

The Pries-Secomb phase separation rule ensures conservation of hematocrit

(14) Hαk
Qαk

+ Hβk
Qβk

= HFk
QFk

.
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At conjunctions (two vessels αk and βk meet to form a single output vessel Gk)
we need to apply only

(15) Qαk
+ Qβk

= QGk
, Hαk

Qαk
+ Hβk

Qβk
= HGk

QGk
.

2.4. Network Solver Algorithm. Proposed model facilitates computation of
the hematocrit in each link as well as pressures and flow rates distribution in the
network. The computational steps can be described by a procedure called Network
Solver Algorithm (NSA). NSA is outlined below.

Network Solver Algorithm
Step 1 : For given initial conditions (value of inlet/outlet pressure or flow rate),

network geometry (length and radius for each vessel), and assuming an initial
uniform hematocrit distribution for each vessel, Hj , j ∈ V, compute viscosity for
each link, pressures and flow rates distribution in the entire network.

Step 2 : Apply the splitting rule to compute new values for the hematocrit
in each link, Hnew

j and repeat Step 1 until the absolute error ε = max(|Hj −
Hnew

j |), j ∈ V is smaller than a given tolerance.

3. Random Graphs

A random graph [3] is a collection of vertices and edges randomly connecting
pairs of nodes. Ussually, it is assumed that the presence or absence of an edge
between two vertices is independent of the presence or absence of any other edge,
so that each edge may be considered to be present with independent probability p.
If the graph has N vertices each of them connected to an average of z edges, then
it is trivial to show that p = z/(N − 1), which for large N is usually approximated
by z/N . The number k of edges connected to any particular vertex is called the
degree of that vertex. Ordinary random graphs are characterized by the Poisson
distribution of vertex degree:

(16) pk =
(

N

k

)
pk(1− p)N−k ≈ zke−z

k!
,

where pk is the probability that a randomly chosen vertex on the graph has degree
k.

Random graphs serve as models of real-world networks of different types, es-
pecially in epidemiology. For example, a disease passing through a community is
strongly dependent on the contacts between those infected and those susceptible to
disease. The network will have individuals represented by vertices and contacts by
edges. Another widely studied network is the Internet. However, random graphs
turn out not to be able to simulate with accuracy real-world phenomens.

3.1. Generating functions. Generating function [2] is a standard tool that can
be used to create microcapillary networks. An example of such a function is G0(x)
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for the probability distribution of vertex degrees k. For a unipartite undirected
graph of N vertices, with N large, G0(x) can be expressed as:

(17) G0(x) =
∞∑

k=0

pkxk,

where pk is the probability distribution of k. Usually the generating functions
verify the condition G0(1) = 1, since the distribution pk is assumed correctly
normalized.

Some properties of probability generating functions are listed below:

• probability pk is given by the kth derivative of G0: pk = 1
k!

dkG0
dxk (0),

• the average degree z of a vertex is z =< k >=
∑

k kpk = G
′
0(1), which

means that computing the mean of the probability distribution that the
function generates, as well as higher moments of the distribution using
the corresponding higher order derivatives of G0.

• if a generating function is used for the distribution of a property k of
an object, then the distribution of the total of k summed over m inde-
pendent realizations of the object is generated by the mth power of that
generating function [2].

Depending on the distribution used, several other function can be defined: for
Poisson-distributed graphs the probability p = z/N of the existence of an edge
between any two vertices is the same for all vertices and

(18) G0(x) =
∞∑

k=0

(
N

k

)
pk(1− p)(N − k)xk = (1− p + px)N ,

while for exponentially distributed graphs we have pk = (1 − e−1/K)e−k/K , with
K constant, and

(19) G0(x) = (1− e−1/K)
∞∑

k=0

e−k/Kxk =
1− e−1/K

(1− xe−1/K)
.

Furthermore, the expression of the function that generates the distribution of
outgoing edges can be determined

(20) G1(x) =
G
′
0(x)

G
′
0(1)

=
1
z
G
′
0(x),

with z the average vertex degree. Using the third property of the generating
function described above, the generating function for the probability distribution
concerning the number of second neighbors for a vertex is obtained:

(21)
∞∑

k=0

pkGk
1(x) = G0(G1(x)).
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The distribution of third-nearest neighbors is generated by G0(G1(G1(x))),
and so on. Since G1(1) = 1, the average number of second neighbors is z2 =
G
′
0(G1(x))x=1 = ... = G

′
0(1)G

′
1(1) = G

′′
0 (1). Taking into acount that we also have

z = G
′
0(1), one should not think that zk = G

(k)
0 (1) because in general this is not

true.
All the properties defined above can be used for component sizes, mean com-

ponent size, phase transition, giant component, numbers of neighbors and average
path length analysis [2].

4. Microcapillary Networks Generation Using Random Graphs

An algorithm useful for simulating a microcapillary network using random
graphs is presentes. The obtained oriented weighted graph contains all the infor-
mation needed to analyze the network. It is not possible to use directed random
graphs to generate the microcapillary network for two main reasons as follows:
(i) the blood direction through a vessel is given by the inlet and outlet pressures,
and (ii) the blood direction may change in time (this means that even if at each
moment the microcapillary network can be seen as a directed graphs, in reality
the graph is in reality the graph is undirected).

When random graphs with various distributions of vertex degree are generated,
a set of N random numbers ki to represent the degrees of the N vertices in the
graph is needed. Next, pairs of vertices are randomly chosen and joining edges
are placed on the graph . This way a graph is generated (with equal probability)
from the set of all possible graphs with the given set of vertex degrees. The only
condition that has to be checked is that the sum

∑
i ki of the degrees is even, since

each edge added to the graph has two ends. If the condition is not satisfied, a new
set ki is generated and the procedure is repeated until a suitable set is obtained.
Integers representing vertex degrees with any desired probability distribution can
be generated using the transformation method or a rejection or hybrid method [2].

Using the above algorithm, the edges of the graph are constructed. In case
of microcapillary networks, things are a lot less complicated. As mentioned in
Section 2, the network will have a set of in-nodes I, a set of out-nodes O and
a set of interior nodes N . The in-nodes and out-nodes will have degree 1, while
the interior nodes, due to the biological properties of microcapillaries, will have
degree 3. In other words the set ki may contain only elements with values 1 or
3, thus the condition that should be satisfied is |I| + |O| ≡ |N |(mod 2). This
condition means that the number of in-nodes and out-nodes must have the same
parity as the number of interior nodes. The generating function for the probability
distribution becomes

(22) G0(x) =
|I|+ |O|

TOT
x +

|N |
TOT

x3,

where TOT = |I|+ |O|+ |N |.
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The key of the paper is the fact that the obtained graph contains several con-
nected componets. In reality, we need a graph which is connected, which means
that the giant component [2] contains all the nodes of the graph. This is possible
only if |I| + |O| ≤ |N |. The condition is implied by the network structure: an
in-node or out-node can be linked only with interior nodes. Hence, it is easier to
construct the graph by determining first the edges connecting only interior nodes
and only at the end the edges involving in-nodes and out-nodes.

There are two ways of constructing a connected graph, using the random graphs
theory: (i) construct the graph as described above and then add as few edges
as possible between the different connected components or (ii) construct N/2
edges that form N/2 different connected components (i.e. each interior node is
used exactly once), add at each step only edges that connect nodes from different
components to reduce their number and when only one component is obtained,
pairs of vertices are randomly chosen and joining edges are also placed on the
graph, taking into acount the last observation from the previous paragraph.

First method implies modifying the number of interior nodes. Adding an edge
between two different connected components acctually means adding two new
nodes in the graph and replacing one edges from each compenent with two new
edges. Second methods keeps constant the number of nodes and generates - with
equal probability - one of the connected graphs that respect the above properties.

On the other hand, a network containing several connected components can also
be useful. In such a case, studies about how the flow changes in each component
when the components are joined together by adding nodes and edges can be made.

The next step is to assign to each vessel a random radius Rj and a random
length Lj , whose values are taken between a minimum and a maximum value
obtained from experiments. Observations of microcapillary networks show that
some parts of the network may contain larger vessels than others, thus it might
be useful to use different minimum and maximum values for different components
of the network.

Finally, the flow problem of the network should be solved. Since only one
edge leaves the in-nodes only one edge enters the out-nodes enters the out-nodes,
the blood direction for these vessels can be exactly determined. For the rest the
Network Solver Algorithm (proposed in Section 2) is applied.

5. Conclusions and Future Work

Some properties of the microcapillary networks are presented. A mathematical
model for a microcapillary network and an algorithm to solve the flow in such a
network are proposed. Random graphs and generating functions represent useful
tools for analyzing the networks simulating real-world phenomena. A way in which
microcapillary networks can be simulated using undirected graphs (which are then
transformed into weighted directed graphs by solving the flow in the network) is
indicated.
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Future work focuses on analyzing the differences between a simulated micro-
capillary network and a real one. Simulations can indicate the potential of the
proposed model for microcapillary networks analysis. Genetic algorithms can be
used to indicate the damaging rate that will not indluence the overall functionality
of the network. Furthermore, the vital vessels of the network (i. e. destroying
them could lead to a hemorrhage) can be identified using evolutionary techniques.

References

[1] A.R. Pries, T.W. Secomb, P. Gaehtgens - Biophysical aspects of blood flow in the microvas-
culature. Cardiovascular Research 32 (1996), 654-667.

[2] M. E. J. Newman, S. H. Strogatz, and D. J. Watts - Random graphs with arbitrary degree
distributions and their applications, Physical Review E, Volume 64, 026118 (2001)

[3] P. Erdos and A. Renyi, On random graphs I, Publ. Math. (Debrecen) 9 (1959), 290-297.

(1) School of Mathematical Sciences, University of Nottingham, UK
E-mail address: popserban@yahoo.com

(2) Centre for Mathematical Medicine and Biology, School of Mathematical Sci-
ences, University of Nottingham, UK

E-mail address: cipriduduiala@yahoo.com

(3) Mathematics and Computer Science Faculty, ”Babes-Bolyai” University, Cluj-
Napoca, Romania

E-mail address: cchira@cs.ubbcluj.ro


