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Abstract. The only control factor that needs to be selected for Probabilis-
tic Neural Network training to cause a reasonable amount of overlap is the
smoothing parameter σ. The shape of the decision boundary can be made
as complex as necessary by choosing an appropriate value of σ. It has been
shown that the decision boundary varies continuously from a hyperplane to a
very nonlinear surface according to σ and it has also been suggested several
techniques to choose this parameter. The aim of this paper is to introduce
a hybrid technique, sequentially using an incremental search as a first raw
approach, followed by a Monte Carlo search to fine tune the first one. An
application to a medical data concerning the hepatic cancer is also considered.

1. Introduction

The probabilistic neural networks (PNN), introduced by Specht [4], represent
supervised neural networks (NN) widely used in the area of classification, pattern
recognition, nonlinear mapping etc. PNN are essentially based on the well-known
Bayesian classification technique, that is a strategy allowing the minimization of
the expected risk. They constitute a class of NN combining some of the best at-
tributes of statistical pattern recognition and feedforward NN, representing the
neural network implementation of kernel discriminant analysis. The greatest ad-
vantages of PNN are the fact that the output is probabilistic (easy interpretation
of output) and the training speed. PNN requires small training time, training
PNN actually consisting mostly of copying training cases into the network. On
the other hand, the main criticism of PNN is the very rapid increase in memory
and computing time when the input sample dimension and the training set size
increase (”curse” of dimensionality).
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The classification performance of PNN is largely influenced by the smoothing pa-
rameter σ (i.e. the radial deviation of the Gaussian functions). In this paper we
propose a hybrid two-step sequentially algorithm to optimize the smoothing fac-
tor of the PNN. This technique consists in using, as a first step, an incremental
search to estimate local optima of the cost function given by the percentage of well
classified patterns. The second step, the fine tuning process, consists in using a
Monte Carlo technique to estimate the best value of σ, in order to maximize the
classification accuracy. This hybrid searching model is then applied to a medical
data set, concerning the hepatic cancer.
The paper is organized as follows: in the following Section the basic concepts of
PNN are described. Next, the proposed searching approach is presented. Subse-
quently, the experimental setup including the description of the data set and the
sampling technique used are presented. In the next Section, a presentation of the
obtained results is reported. The paper ends with conclusions.

2. Probabilistic Neural Networks

The PNN paradigm is based on the Bayes strategy for pattern recognition.
Consider a q-category situation in which the state of nature θ is known to be θk,
k=1, 2,..., q. If it desired to decide whether θ = θk based on a set of measurements
represented by the p-dimensional samples (vectors x=(x1, x2, ..., xp)), the Bayes
decision rule formally becomes:

• Decision θk: ”State of nature is θk”;
• Given measurement x if the decision is θk then the error is P (error|x) =

1− P (θk|x);
• Minimize the probability error;
• Bayes decision rule: ”Decide θk if P (θk|x) > P (θj |x), ∀j 6= k” or, equiv-

alently, ”Decide θk if P (x|θk)P (θk) > P (x|θj)P (θj), ∀j 6= k”

To illustrate the way the Bayes decision rule is applied to PNN, consider the
general case of a q-category classification problem, in which the states of nature
are denoted by Ω1, Ω2, ..., Ωq. The goal is to determine the class (category) mem-
bership of a multivariate sample data (i.e. a p-dimensional random vector x)
into one of the q possible categories Ω1, Ω2, ..., Ωq, that is, we have to make the
decision D(x) = Ωi, i = 1, 2, ..., q, where x represents the sample (data vector).
If we know the (multivariate) probability density functions f1(x), f2(x), ..., fq(x),
associated with the categories Ω1, Ω2, ..., Ωq, the a priori probabilities hi = P (Ωi)
of occurrence of patterns from categories Ωi and the loss (or cost) parameters li,
associated with all incorrect decisions given Ω = Ωi, then, according to the Bayes
decision rule, we classify x into the category Ωi if the following inequality holds
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true:

lihifi(x) > ljhjfj(x), i 6= j.

The boundaries between every two decision classes Ωi and Ωj , i 6= j, are given
by the hypersurfaces:

lihifi(x) = ljhjfj(x), i 6= j.

and the accuracy of the decision depends on the accuracy of estimating the
corresponding p.d.f’s. only.

The key to using the Bayes decision rule to PNN is represented by the tech-
nique chosen to estimate the p.d.f’s fi(x) corresponding to each decision class Ωi,
based upon the training samples set. The classical approach uses a sum of small
multivariate Gaussian distributions, centered at each training sample, that is:

fi(x) = 1
(2π)p/2σp · 1

mi
·

mi∑
j=1

exp
(
−‖x−xj‖2

2σ2

)
, i = 1, 2, ..., q,

where mi is the total number of training patterns in Ωi, xj is the j-th training
pattern from category Ωi, p is the input space dimension and σ is the adjustable
”smoothing” parameter using the training procedure.

Bayes decision rule: For each x ∈ Ωi compare fi(x) and fj(x) for all i 6= j,
following the algorithm:

”IF lihifi(x) > ljhjfj(x) (for all j 6= i) THEN x ∈ Ωi ELSE IF lihifi(x) ≤
ljhjfj(x) (for some j 6= i) THEN x /∈ Ωi”

The standard PNN training procedure requires a single pass over all the samples
of the training set, rendering PNN faster to train compared to feedforward NN.

Basically, the architecture of PNN might be limited to three layers: the in-
put/pattern layer, the summation layer and the output layer. Each input/pattern
node forms a product of the input pattern vector x with a weight vector Wi and
then performs a nonlinear operation, that is exp

[−(Wi − x)(Wi − x)τ/(2σ2)
]

(as-
suming that both x and Wi are normalized to unit length), before outputting its
activation level to the summation node. Each summation node receives the out-
puts from the input/pattern nodes associated with a given class and simply sums
the inputs from the pattern units that correspond to the category from which the
training pattern was selected, that is

∑
i exp

[−(Wi − x)(Wi − x)τ/(2σ2)
]
. The

output nodes produce binary outputs by using the inequality:
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∑

i exp
[−(Wi − x)(Wi − x)τ/(2σ2)

]
>

∑
j exp

[−(Wj − x)(Wj − x)τ/(2σ2)
]

related to two different categories Ωi and Ωj .
Note. Since the PNN paradigm is based on the Bayes decision rule, the binary

outputs above are based on finding the maximum of all sums.

3. Hybrid incremental/Monte Carlo searching technique

The key factor in PNN is therefore the way to determine the value of σ, since
this parameter needs to be estimated to cause reasonable amount of overlap. Com-
monly, the smoothing factor is chosen heuristically. If σ is too large or too small
the corresponding probability density functions will lead to the increase in mis-
classification rate. Thus, too small deviations cause a very spiky approximation
which cannot generalize and, on the other hand, too large deviations smooth out
the details.

Although an appropriate figure is easily chosen by experiment, by selecting a
number which produces a low selection error, and fortunately PNN are not too
sensitive to the precise choice of smoothing factor, the smoothing parameter σ
is critical for the classification accuracy. Therefore, there are some approaches
to assess this important PNN issue [1], [2], [3], [5]. This work deals with the
estimation of a (near) optimum value of σ using a two-step method, combining
both a deterministic raw detection technique (incremental search) and a stochastic
fine detection (Monte Carlo search).

The complete hybrid searching algorithm consists in three steps (sub-algorithms):

• Algorithm for estimating the searching domain Dσ, using statistical
tools.

• Algorithm for raw estimating of local optima of the cost function, using
an incremental search.

• Algorithm for fine estimating of the optimum value of σ, using a Monte
Carlo search.

We synthesize below the three algorithms.

A. Algorithm to estimate Dσ

Input. Consider q classes of objects (p-dimensional vectors) Ω1, Ω2, ..., Ωq.
Each decision class Ωi contains a number of mi vectors (or training patterns),
that is Ωi = {x1,x2, ...,xmi}.

1) For each class Ωi, i = 1, 2, ..., q, compute the (Euclidian) distance between
any pair of vectors and denote these distances by d1, d2, ..., dri , where ri = C2

mi
.

2) For each class Ωi, i = 1, 2, ..., q, compute the corresponding average distances

and standard deviations Di =

ri∑
j=1

dj

ri
, SDi =

2

√
ri∑

j=1
(dj−Di)2

ri
.
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3) For each class Ωi, i = 1, 2, ..., q, consider the corresponding 99.7% confidence
interval IΩi = (Di − 3SDi, Di + 3SDi) for the average distances.

Output. Dσ = (∪IΩi
)∩R+ represents the searching domain for the smoothing

parameter σ.

B. Algorithm for incremental search
Input. The searching domain Dσ.
1) Divide the searching domain Dσ by N dividing knots ∆j , j = 1, 2, ..., N into

(N + 1) equal sectors.
2) Repeat Bayes decision rule algorithm by assigning σ = ∆j .
3) Compute the maximum value of the cost function.
Output. The values σ’s corresponding to the local optima of the cost function.

C. Algorithm for Monte Carlo search
Input. The values σ’s corresponding to the local optima of the cost function.
1) Consider heuristically a neighborhood for each σ (i.e. an interval centered in

σ).
2) Generate in each interval a number M of random dividing points {P1, P2, ..., PM},

uniformly distributed.
3) Repeat Bayes decision rule algorithm by assigning σ = Pk, k = 1, 2, ..., M .
4) Compute the maximum value of the cost function in each case.
Output. The value σ corresponding to the global optimum of the cost function

represents the optimal value of the smoothing parameter.
Note. In the incremental search, the number of dividing knots N was chosen

heuristically. It has been experimentally proven that for N > 300, the accuracy
graph became flat, ending thus a further search. The number of training pat-
terns that are classified in the right way represents the cost function of the PNN
algorithm.

4. Experimental results

The model was fitted to real data consisting of 299 individuals (both patients
and healthy people) from the Department of Internal Medicine, Division of Gas-
troenterology, University Emergency Hospital of Craiova, Romania. This group
of individuals consists of 60 patients with chronic hepatitis (CH), 179 patients
with liver cirrhosis (LC), 30 patients with hepatocellular carcinoma (HCC) and 30
healthy people (HP).

The hybrid PNN algorithm has been applied to data in order to classify the
group of individuals into two categories, depending on the diagnosis type: Ω1 =
hepatic cancer (HCC) and Ω2 = non-hepatic cancer. In this way, the physician
benefits from an efficient tool, provided by this approach, seen as a computer-aided
diagnostic of the hepatic cancer.
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Each individual in the data set is represented by a 15-dimensional vector x =
(x1, x2, ..., x15), where the components represent some of the most important char-
acteristics (serum enzymes) leading to the right medical diagnosis. Concretely, x1

= TB (total bilirubin), x2 = DB (direct bilirubin), x3 = IB (indirect bilirubin),
x4 = AP (alkaline phosphatase), x5 = GGT (gamma glutamyl transpeptidase),
x6 = LAP (leucine amino peptidase), x7 = AST (aspartate amino transferase),
x8 = ALT (alanine amino transferase), x9 = LDH (lactic dehydrogenase), x10 =
PI (prothrombin index), x11 = Gamma, x12 = Albumin, x13 = Glycemia, x14 =
Cholesterol, x15 = Age.

The first step to obtain a good classification using PNN is to optimally estimate
the misclassification costs and the prior probabilities. Unfortunately, there is no
definitive science to obtain them and must be assigned as a specific part of the
problem definition. In our practical experiment we have estimated them heuris-
tically. Thus, as far as the costs parameters are concerned, we have considered
them to be inversely proportional to the average distances Di, that is li = 1/Di.
As concerns the prior probabilities, they measure the membership probability in
each group and, thus, we have considered them equal to each group size, that is
hi = mi.

To avoid overfitting, the data set was randomly partitioned into two sets: the
training set and the testing set. A number of 254 persons (85%) of the initial
group were withheld from the initial group for the training process. Once the
optimal smoothing parameter σ was obtained using the training set, the trained
PNN was applied to the testing set. The procedure was repeated 10 times and
the algorithms were coded in Java for the ease of implementation, using JDBC
(Java Database Connectivity) for data processing. In Table 1 we have displayed
the results of our experiment.

Table 1. Experimental results

Accuracy (%)
No. N of dividing knots Incremental search Hybrid search

Training Testing Testing Sigma
100 90 83 86 488.065
150 92 85 90 557.786
300 96 90 95 581.278

The gain in classification accuracy is obviously, obtained without a significant
loss in speed.
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5. Discussion

A hybrid searching model of the smoothing parameter for probabilistic neural
networks was proposed. The proposed approach incorporates an incremental (de-
terministic) search for the optima of the cost function and a Monte Carlo (stochas-
tic) search for the global optimum of the smoothing parameter. The effectiveness
of this PNN-based hybrid model is assessed on a medical data set related to hepatic
cancer diagnosis. We used raw data (the only data available for the experiment)
and we obtained reliable results providing the PNN ability and flexibility to learn
from raw examples. Implementation is relatively rapid and it is an alternative to
standard statistical approaches.

To evaluate further the capabilities of this model, comparisons with other
searching techniques have to be done. Further work will also include an alter-
native to this approach, using evolutionary algorithms for the second step, instead
of the Monte Carlo simulation.
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