
KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2007
Cluj-Napoca (Romania), June 6–8, 2007, pp. 96–103

NATURAL LANGUAGE GENERATION: APPLICATIONS FOR
ROMANIAN LANGUAGE

CIPRIAN-IONUT DUDUIALĂ (1)

Abstract. Natural Language Generation (NLG) and Foreign Language Writ-
ing Aid (FLWA) are two important tasks of Natural Language Processing
(NLP), which deal with obtaining natural language from a machine represen-
tation system and building computer programs that assists a non-native lan-
guage user in writing decently in a target language, respectively. This paper
uses both NLG and FLWA. Suppose a person wants to translate a sentence
from English to Romanian language, but he/she does not speak Romanian.
The first thing to be done is to take a dictionary, find the corresponding
words, put them together and form the sentence, but a lot of disambiguities
might arise. Using an affix grammar to construct the Romanian language
grammar and a semantic which gives us information about the words we use
to build a sentence, we can construct, starting from a set of words, correct
sentences from sintactic and semantic point of view. This paper deals only
with short sentences.

1. Introduction

Translating a sentence from English to Romanian means more than translating
word with word using a dictionary . We risk to obtain phrases that make no sense.

First of all, the words order in a phrase is different. ”Is Dory online?” is
translated ”Dory este online?” due to the fact that in Romanian language the
subject appears before the predicate even when a question is constructed. Next,
in English, for some tenses of verbs, the same form is used for different persons,
while Romanian language uses different forms. In addition, a dictionary does not
contain the verb forms for every tense and person. Another ambiguity can be
generated by an adjective that determines a noun, since in English the adjectives
have only one form. They do not depend on the genre or number of the substantive,
but Romanian language uses different forms for adjectives.

This paper takes into consideration only short propositions containing a subject,
a predicate and, if needed, some complements. The subject and the complements
can be followed by at most one attribute. Conjuctions like ”si” or ”sau” and

Key words and phrases. natural language generation, affix grammar.

c©2007 Babeş-Bolyai University, Cluj-Napoca

96

NATURAL LANGUAGE GENERATION: APPLICATIONS FOR ROMANIAN LANGUAGE 97

punctuation marks will be omitted. This means the propositions cannot have a
multiple subject.

2. Theoretical Support

The main idea comes from [1], where models for source code generators are
created. Starting from a language grammar and having some logical relations and
simple statements as input, valid source code for a given programming language
is obtained. In what follows, the simplest model from that paper is analyzed.

Let G = {{S,C}, {∆, |−, ϕ, Ω, a, b, c1, c2, (,), ”, ”}, P, S} be the proper grammar
with the set of productions P:

S → (S, S)|| − (C, S)|∆(C, S, S)|ϕ(C, S)|Ω(S, C)|a|b
C → c1|c2

In the grammar definiton, the fundamental control structures are encoded: ”(,)”
means ”concatenation”, ”|−” means ”if whith one branch”, ”∆” means ”if with
two branches”, ”ϕ” means ”while” and ”Ω” means ”repeat”. Let a and b be two
fundamental structures and logical expressions. Then:

• a < b, if a always appears before b in the generated programs;
• a > b, if a always appears after b in the generated programs.

In the following example, a and b are fundamental structures, while c1 and c2
are logical expressions:

a b c1 c2

a - < < <
b > - < <
c1 > > - <
c2 > > > >

Table 1. Source code generators - semantic example.

The matrix is anti-symmetric, thus the defined model is consistent. For the
above example, the set of words produced by applying exactly one production
which does not involve only terminal symbols is reduced to S={(a, b), (a, c1), (b,
c1), (a, c2), (b, c2)}. The programs are equivalent with the Pascal programs:

a; REPEAT a REPEAT b REPEAT a REPEAT b
b; UNTIL c1; UNTIL c1; UNTIL c2; UNTIL c2;

A similar model solves our problem. An appropriate grammar helps building
correct sentences from syntactical point of view. More than that, keeping records
about the forms of the words (substantives, adjectives, verbs, pronouns, adverbs
and prepositions) for singular and plural and for all three genres is useful to solve
the ambiguities that might appear.

98 CIPRIAN-IONUT DUDUIALĂ (1)

3. Romanian Language Grammar

This section introduces the Romanian language grammar, which is a simple
grammar used to illustrate some examples. It can be enriched with other pro-
ductions to reflect all forms of the sentences that can be created using Romanian
words. An affix grammar with restrictions [2] is used, which is in fact a context
free grammar with finite set-valued features, acceptable to linguists. A simple
example is G = {{A, B,C}, {a, b, c}, P1, A}, with the set of productions P1 :

param :: one; two.

A → ({param :: one}|{param :: two}), B(param)
A → ({param :: one}|{param :: two}), C(param)

B(one) → a

B(two) → b

C(param) → c

The restrictions are introduced through some parameters. In our case, ”param”
is the parameter, while ”one” and ”two” are the parameter values and are intro-
duced by ”::”. For grammar G, the conditions appear before rewriting and the
following expressions are generated:

A → B(one) → a A → B(two) → b
A → C(one) → c A → C(two) → c

which means that C(param) can be applied for all values of param. Suppose now
that the conditions are after the rewriting, that is:

param :: one; two.

A → B(param), ({param :: one}|{param :: two})
A → C(param), ({param :: one}|{param :: two})

B(one) → a

B(two) → b

C(param) → c

In this case, A → B(param) is applied first. For all the values that param
can take according to the condition imposed to this production, we will rewrite
B(param). Applying the same principle for A → C(param) we obtain:

A → B(param) → B(one) → a

A → B(param) → B(two) → b

A → C(param) → C(one) → c

A → C(param) → C(two) → c

NATURAL LANGUAGE GENERATION: APPLICATIONS FOR ROMANIAN LANGUAGE 99

Next, the affix grammar for the Romanian language is created to simplify things
a little from notation point of view. Let

GR = {{SR, Prop, Substantiv, Subst Atr,Atribut, Predicat, Adverb,

ListComplAdv, ListCompl, Compl}, {adjectiv(gen, nr), prepozitie,

substantiv(gen, nr, caz, tip articol), pron pos(pers, genp, nrp, gen, nr),
pronume(pers, gen, nr, caz), verb(pers, nr, timp), adverb,

verb gerunziu, verb infinitiv}, PR, SR}
be the Romanian language grammar. The parameters and their values for GR are:

nr, nrp :: sing, pl.

gen, genp :: masc, fem, neutru.

pers :: I, II, III.

timp :: prezent, viitor, perf comp, imperf, mmcperf, conj, cond opt.

tip subiect :: subst, pron.

tip articol :: hot, nehot.

caz :: N, Ac, D, G.

The set of productions PR is defined as follows:

SR → ({tip subiect :: subst}|{tip subiect :: pron}), P rop(tip subiect)

Prop(subst) → (({gen :: masc}|{gen :: fem}|{gen :: neutru})&({nr :: sing}|
{nr :: pl})&({tip articol :: hot}|{tip articol :: nehot})),
substantiv(gen, nr,N, tip articol) Predicat(III, gen, nr)

Prop(subst) → (({gen :: masc}|{gen :: fem}|{gen :: neutru})&({nr :: sing}|
{nr :: pl})), Subst Atr(gen, nr,N)
Predicat(III, gen, nr)

Prop(pron) → (({gen :: masc}|{gen :: fem})&({nr :: sing}|{nr :: pl})&
({pers :: I}|{pers :: II}|{pers :: III})),
pronume(pers, gen, nr,N) Predicat(pers, gen, nr)

Subst Atr(gen, nr, caz) → ({tip articol :: hot}|{tip articol :: nehot}),
substantiv(gen, nr, caz, tip articol) Atribut

Subst Atr(gen, nr, caz) → ({tip articol :: hot}|{tip articol :: nehot}),
substantiv(gen, nr, caz, tip articol)
adjectiv(gen, nr)

100 CIPRIAN-IONUT DUDUIALĂ (1)

Subst Atr(gen, nr, caz) → (({tip articol :: hot}|{tip articol :: nehot})&
({genp :: masc}|{genp :: fem})&
({nrp :: sing}|{nrp :: pl})&
({pers :: I}|{pers :: II}|{pers :: III})),
substantiv(gen, nr, caz, tip articol)
pron posesiv(pers, genp, nrp, gen, nr)

Atribut → (({gen :: masc}|{gen :: fem}|{gen :: neutru})&({nr :: sing}|
{nr :: pl})&({caz :: Ac}|{caz :: G})&({tip articol :: hot}|
{tip articol :: nehot})), [prepozitie]
substantiv(gen, nr, caz, tip articol)

Atribut → (({gen :: masc}|{gen :: fem})&({nr :: sing}|{nr :: pl})&
({pers :: I}|{pers :: II}|{pers :: III})), prepozitie

pronume(pers, gen, nr,Ac)

Predicat(pers, gen, nr) → ({timp :: prezent}|{timp :: viitor}|{timp :: conj}|
{timp :: perf comp}|{timp :: mmcperf}|
{timp :: imperf}|{timp :: cond opt}),
verb(pers, nr, timp) [ListComplAdv(gen, nr)]

ListComplAdv(gen, nr) → [ListComplAdv(gen, nr)]Adverb(gen, nr)
[ListComplAdv(gen, nr)]|ListCompl

Adverb(gen, nr) → adjectiv(gen, nr)|adverb|verb gerunziu

ListCompl → Compl|Compl ListCompl

Compl → prepozitie verb infiniv

Compl → (({gen :: masc}|{gen :: fem}|{gen :: neutru})&({nr :: sing}|
{nr :: pl})&({caz :: Ac}|{caz :: D})&({tip articol :: hot}|
{tip articol :: nehot})), [prepozitie]
substantiv(gen, nr, caz, tip articol)

Compl → (({gen :: masc}|{gen :: fem}|{gen :: neutru})&({nr :: sing}|
{nr :: pl})&({caz :: Ac}|{caz :: D})), [prepozitie]
Subst Atr(nr, caz)

NATURAL LANGUAGE GENERATION: APPLICATIONS FOR ROMANIAN LANGUAGE101

Compl → (({gen :: masc}|{gen :: fem})&({nr :: sing}|{nr :: pl})&
({pers :: I}|{pers :: II}|{pers :: III})&({caz :: Ac}|{caz :: D})),
[prepozitie]pronume(pers, gen, nr, caz)

4. Simple Model for NLG Using Romanian Language Grammar

Using a semantic the amount of computations needed to determine a correct
proposition is reduced. Each word used is considered an element of a set and a
relation between the words is defined. The phrase: ”I always read the weather
forecast in the newspapers” is translated into Romanian ”Eu citesc intotdeauna
previziunile meteo in ziare”. Translating word by word, using a dictionary, the user
obtains the set of words S = {eu, intotdeauna, a citi, vremea, previziuni, ziare}
and establishes, for example, the following relations between them:

eu a citi intotdeauna vremea previziuni ziare
eu - - - - - -

a citi - - Pr - Pr Pr
intotdeauna - C - - - -

vremea - - - - A -
previziuni - C - Wd - -

ziare - C - - - -
Table 2. NLG - simple model example.

In the above table, each entry has the following meaning:
• ’-’ → the 2 elements are not related
• ’Pr’ → the word from the line is the predicate determined by the com-

plement from the column
• ’C’ → the word from the line is the complement which determines the

verb from the column
• ’A’ → the word from the line is the attribute which determines the word

from the column
• ’Wd’ → the word from the line is the word determined by the attribute

from the column
Observe that the predicate of the proposition can be easily determined, since

for sure one line has one or several of the entries with value ’Pr’. Note also that a
semantic has at least two words due to the fact that a subject and a predicate are
needed for any proposition. Anyway, another question needs an answer: how can
be determined the person and the number of a pronoun, for example? For that
a database - like a dictionary (DEX) - that gives us information about words is
used.

102 CIPRIAN-IONUT DUDUIALĂ (1)

5. Extension of the Simple Model

The paper purpose is not to find new methods for NLG. It proves that using the
simple idea of the models created in [1] and given a set of words correct sentences
can be constructed using only those words. In our case, not only the semantic is
important: creating propositions that make sense cannot be done at random. Not
any adjective can be used to describe a substantive and not any adverb can be
used together with a certain verb. Thus, the database needs some links between
words showing if it makes sense to use them together - for example, specifying that
”munte” can be used with the adjective ”imens”, but makes no sense to be used
with adjectives like ”scund”. For the models defined in this paper, some problems
appear for substantives in dative case if the links are not defined. All the forms of
a substantive or adjective are also need - for different genres and numbers - and
all the forms of a verb - for different tenses and persons.

Next, to reduce the number of propositions generated, the words order in the
phrase is specified. We can say: ”Raul curge lin la vale” or ”Raul curge la vale
lin” and so on. A semantic of the form of [Table 3] indicates which word can be
in front of another and which can not be.

Definition: Let a and b be two words. Then:

• a < b, if a always appears before b in the generated propositions;
• a > b, if a always appears after b in the generated propositions;
• a = b, if a and b can appear in any order in the generated propositions.

Definition: A simple semantic is a table defining the order of words in a
phrase and having the form of [Table 3].

raul a curge la vale lin
sg raul - < < < <

prez curge > - = = =
- la > = - < >
sg vale > = > - >
adj lin > = < < -

Table 3. NLG - simple semantic example.

The above table shows that ”raul” is always the first word, while ”lin” always
appears before ”vale”. So, only ”Raul lin curge la vale” is generated. Not spec-
ifying that ”lin” is an adjective means it can also be considered an adverb, thus
”Raul curge lin la vale” could also be generated. Two important issues can be de-
duced: (i) the prepositions can be introduced into the model, which helps avoiding
inappropriate use of prepositions and (ii) some adjectives can be used as adverbs
and the sense of the proposition is changed, depending on the interpretation given

NATURAL LANGUAGE GENERATION: APPLICATIONS FOR ROMANIAN LANGUAGE103

to that adjective. Also, for example, the word ”muncitor” can be used as adjective
or substantive. Thus, specifying its function might be useful.

Another semantic that specifies which word is determined by another one can
be introduced:

raul a curge la vale lin
sg raul - < < < < d

prez curge > - = =d =
- la > = - < d >
sg vale > d= > d - >
adj lin d > = < < -

Table 4. NLG - semantic example.

In [Table 4] the letter ”d” appears before the order sign. ”a d* b”, with ”*”
from {>,<, =} means a determines b, while ”a *d b” means a is determined by
b. Several combinations are possible: a substantive determined by an adjective
or another substantive (attributes), for example. Moreover, a preposition appears
before the word determined. Obviously, preposition means before a position, thus
in the line corresponding to each preposition we have exactly once ” < d”, while
in the corresponding column we have exactly once ” > d”. If this condition is not
satisfied, we say that the semantic is inconsistent. If a word determines more than
one other word the semantic is also considered inconsistent. The probability that
in a short proposition a word is used twice is very small, but if this happens that
word is added twice in the semantic.

6. Conclusions

This paper presents a way of generating senteces using a given set of Romanian
words. An affix grammar for the Romanian language is introduced to ensure
that the sentences are correct from syntactical point of view. Finally, in order to
reduce the number of sentences generated and and to indicate the words order in
a sentence, three different semantics are defined.

References

[1] Vasile Cioban, Ciprian Duduiala - ”A Case Tool Proposal for Source Code Generators”,
Proceedings of the Symposium ”Colocviul Academic Clujean de Informatica”, pag. 147-
153, 1-2 June 2006.

[2] http://www.cs.ru.nl/agfl/ - official site of AGFL formalism developed between 1991 and
1996 by the Computer Science Department of the Radboud University of Nijmegen.

(1) Centre for Mathematical Medicine and Biology, School of Mathematical Sci-
ences, University of Nottingham, UK

E-mail address: cipriduduiala@yahoo.com

