
KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2007
Cluj-Napoca (Romania), June 6–8, 2007, pp. 25–32

LARGE SCALE EXPERIMENTS WITH FUNCTION TAGGING

MIHAI LINTEAN (1) AND VASILE RUS(2)

Abstract. We present in this paper large scale experiments with two De-
cision Trees based approaches to the task of function tagging. The task of
function tagging involves labeling certain nodes in an input parse tree with a
set of functional marks such as logical subject, predicate, etc. In the first ap-
proach, we consider only nodes that are labeled with a functional tag. In the
second approach, all nodes are considered whether they are labeled with func-
tion tags or not. The non-labeled nodes are simply considered being labeled
with the generic tag NON-F. The results obtained on a standard data set are
significantly outperforming baseline approaches when the most frequent tag
is assigned.

1. Introduction

Syntactic parsing in its most general definition may be viewed as discovering
the underlying syntactic structure of a sentence. The specificities include the
types of elements and relations that are retrieved by the parsing process and the
way in which they are represented. In this paper we focus on Treebank-style[1]
syntactic parsers that retrieve phrases, e.g. NP - noun phrase, VP - verb phrase,
S - sentence, and hierarchically organize them in parse trees.

Treebank-style state-of-the-art statistical parsers limit their output to basic
structures such as NPs, VPs, PPs (Prepositional Phrases). They are not able to
deliver richer syntactic information such as logical subject or predicate although
Penn Treebank, the annotated corpus that state of the art parsers use for training,
contains annotations for such type of information in the form of function tags
and remote dependencies coded as traces. This paper presents experiments with
Decision Trees based approaches to augment the output of Treebank-style syntactic
parsers with functional information.

In Section 2.2 of Bracketing Guidelines for Treebank II [1], there are 20 function
tags grouped in four categories: form/function discrepancies, grammatical role,
adverbials, and miscellaneous. Up to 4 function tags can be added to the standard
syntactic label (NP, ADVP - Adverbial Phrase, PP, etc.) of each bracket. Those

2000 Mathematics Subject Classification. 68T35, 68T50, 91F20.
Key words and phrases. parsing, function tagging.

c©2007 Babeş-Bolyai University, Cluj-Napoca

25



26 MIHAI LINTEAN (1) AND VASILE RUS(2)

Table 1. Categories of Function Tags

Category Function Tags

Grammatical DTV, LGS, PRD, PUT, SBJ, VOC
Form/Function NOM, ADV, BNF, DIR, EXT, LOC, MNR, PRP, TMP
Topicalisation TPC
Miscellaneous CLR, CLF, HLN, TTL

tags were necessary to distinguish words or phrases that belong to one syntactic
category and are used for some other function or when it plays a role that is not
easily identified without special annotation. We rearranged the four categories
into four new categories based on corpus evidence, in a way similar to [2]. The
new four categories are given in Table 1 and were derived so that no two labels
from same new category can be attached to the same bracket.

We present in this paper two approaches to automatically assign function tags
to constituents in parse trees. The function tags assignment problem is viewed
as a classification problem, where the task is to select the correct tag from a list
of candidate tags. In the first approach, we only considered constituents from
syntactic parse trees in Treebank that are labeled with functional tags. In the
second approach, we considered both labeled and unlabeled constituents. The
unlabeled constituents are simply considered being labeled with the generic label
NON-F (non-functional tag).

This is the first large scale evaluation of Decision Trees based solutions to the
task of functional tagging. We used the full data set that Penn Treebank makes
available in order to train and test a Decision Trees based functional tagger. In [3],
the Decision Trees approach was abandoned (see section 5.2 Why we abandoned
decision trees) due to memory limitations. We addressed the memory issue by
using a set of smart preprocessing steps applied to training and test data and by
using a High-Performance Computer (IBM AIX System with 64GB of RAM). The
preprocessing was necessary in order to reduce the number of distinct values some
features have, e.g. lexical based features such as head word. Too many distinct
values for these features led to very large Decision Trees that would not fit even
in the memory of a High-Performance Computer similar to the one that we used.

The rest of the paper is organized as follows. The next section presents related
work in the area of functional tagging and Decision Trees. Section 3 describes the
problem we study in this paper while Section 4 presents the generic model we use
to solve the problem. Next, the Experimental Setup and Results section provides
details about the conducted experiments and results. Conclusions end the paper.



LARGE SCALE EXPERIMENTS WITH FUNCTION TAGGING 27

2. Related Work

Blaheta and Johnson [2] addressed the task of function tagging. They use a
statistical algorithm based on a set of features grouped in trees, rather than chains.
The advantage is that features can better contribute to overall performance for
cases when several features are sparse. When such features are conditioned in a
chain model the sparseness of a feature can have a dilution effect of a ulterior
(conditioned) one.

Previous to that, Michael Collins [6] only used function tags to define certain
constituents as complements. The technique was used to train an improved parser.

Related work on enriching the output of statistical parsers, with remote depen-
dency information, were exposed in [8] and [7]. Minipar [9] is a dependency parser
for English that can identify grammatical dependencies (e.g. comp1 - first com-
plement, rel - relative clause) among words in a sentence. The set of grammatical
dependencies in Minipar overlaps at some extent with the functional tags from
Treebank.

In the vast literature on Decision Trees, also known as classification trees or
hierarchical classifiers, at least two seminal works must be mentioned, those by
Breiman et al. [4] and Quinlan [12]. The former originated in the field of sta-
tistical pattern recognition and describes a system, named CART (Classification
And Regression Trees), which has mainly been applied to medical diagnosis and
mass spectra classification. The latter synthesizes the experience gained by people
working in the area of machine learning and describes a computer program, called
ID3, which has evolved into a new system, named C4.5, by Quinlan.

We opted for Decision Trees for two main reasons. First, Decision Trees can
be mapped into rules that are easily interpretable by humans. Second, previous
attempts[3] to address the problem of function tagging with Decision Trees was
abandoned. We wanted to fill this gap in literature about how suitable Decision
Trees are at the function tagging task.

3. The Problem

The task of function tagging is to add extra labels, called function tags, to
certain constituents in a parse tree. Let us pick as an illustrative example the
sentence Mr. Hahn rose swiftly through the ranks1. A state-of-the-art syntac-
tic parser will generate the parse tree shown on the left hand side in Figure 1.
Each word in the sentence has a corresponding leaf (terminal) node, denoting that
word’s part of speech. For instance, the word ranks has NNS as its part of speech
(NNS indicates a common noun in plural form). All the other nodes, called in-
ternal or non-terminal nodes, will be labeled with a syntactic tag that marks the
grammatical phrase corresponding to the node, such as NP, VP, or S.

1This sentence is from Wall Street Journal portion of Penn Treebank.



28 MIHAI LINTEAN (1) AND VASILE RUS(2)

Mr.

NNP NNP VBD

RB IN

DT NNS

NP VP

PP

NP

ADVP

S

Hahn rose

swiftly through

the ranks

NNP

Mr.

NNP VBD

RB IN

PP-DIR

DT NNS

NP-SBJ VP

NP

ADVP-MNR

S

Hahn rose

swiftly through

the ranks

Input Tree Output Tree

Figure 1. A Simple Syntactic Tree

It is not obvious from such syntactic parse trees which nodes are playing the
role/function of logical subject for instance. An user of these parse trees needs to
develop extra procedures to detect the roles played by various words or phrases.
The task of function tagging, the problem addressed in this paper, is to add
function tags to nodes in a parse tree.

4. The Model

We modeled the problem of assigning function tags as a classification problem.
Classifiers are programs that assign a class from a predefined set of classes to
an instance based on the values of attributes used to describe the instance. We
defined a set of linguistically motivated attributes/features based on which we
characterized the instances.

Let us analyze the set of features and classes we used to build the classifiers. We
used a set of features inspired from [2] that includes the following: label, parent’s
label, right sibling label, left sibling label, parent’s head pos (part-of-speech),
head’s pos, grandparent’s head’s pos, parent’s head, head. We did not use the
alternative head’s pos and alternative head (for prepositional phrases that would
be the head of the prepositional object) as explicit features but rather modified
the phrase head rules so that the same effect is captured in pos and head features,
respectively.

The set of classes we used corresponds to the set of functional tags in Penn
Treebank. The functional tags are grouped in four categories given in Table 1.
The four categories were derived so that no two labels from same new category
can be attached to the same bracket.

The above features and classes are used to derive Decision Trees classifiers. The
next section describes the experiments we conducted to derive and evaluate the
classifiers.



LARGE SCALE EXPERIMENTS WITH FUNCTION TAGGING 29

5. Experimental Setup And Results

We trained the classifiers on sections 1-21 from Wall Street Journal (WSJ) part
of Penn Treebank and used section 23 to evaluate the classifiers. This split is
standard in the syntactic parsing community [5]. The evaluation follows a gold
standard approach in which the classifiers’ output is automatically compared with
the correct values, also called gold values.

The performance measures reported are accuracy and kappa statistic. The accu-
racy is defined as the number of correctly tagged instances divided by the number
of attempted instances. Kappa statistic [13] measures the agreement between pre-
dicted and observed classes, while correcting for agreement that occurs by chance.
Kappa can have values between -1 and 1 with values greater than 0.60 indicating
substantial agreement and values greater than 0.80 showing almost perfect agree-
ment. We also report precision, recall, and F-measure for the second experiment
when we also consider the non labeled nodes (viewed as negative instances). Such
measures are reported on positive instances (true positives are considered correct).
Precision is the number of correct guesses of tags from one category over the to-
tal number of guesses (correct of incorrect) for tags from that category. Recall is
the number of correct guesses of tags in some category over the actual number
of instances that should have a tag from that category. The F-measure value is
calculated based on Precision and Recall from the following formula:

(1) F −measure =
2 ∗ Precision ∗Recall

Precision + Recall

To build the classifiers, we used the implementation of Decision Trees in WEKA.
WEKA [13] is a comprehensive, open-source (GPL) machine learning and data
mining toolkit written in Java. WEKA requires a lot of memory to build the
models from large training sets, especially for Decision Trees. A regular machine
with 2GB of memory is not sufficient even after the preprocessing steps aimed at
reducing the size of data (see below details about preprocessing). We used an IBM
AIX High Performance Computer (HPC) system with 64GB of RAM.

5.1. Data Collection. To build Decision Trees based classifiers, one must collect
training data. The data is a set of problem instances. Each instance consists
of values for each of the defined features of the underlying model and the corre-
sponding class, i.e. function tag in our case. Instances are automatically created
from Penn Treebank parse trees by simply traversing those trees and for each node
extracting the values for each feature and for the class attribute.

Since a node can have several tags there are two possible setups for our classifi-
cation task. We can define a class as a composed tag of all possible combinations
of function tags that can be assigned to a node. A single classifier is generated in
this case that would assign one composed tag to a node, i.e. one or more individual
functional tags at once. We do not use this setup in this work. It was previously



30 MIHAI LINTEAN (1) AND VASILE RUS(2)

studied by Lintean and Rus [10]. Alternatively, we can try to build four separate
classifiers, one for each of the four functional categories described earlier in the
paper. Knowing that a node cannot have more that one tag from a given category,
each classifier will be used to predict the functional tag from the corresponding
category. We focus on this latter setup in this paper.

Some simplifications are necessary to make the task feasible. In those exper-
iments punctuation was mapped to an unique tag PUNCT and traces were left
unresolved and replaced with TRACE. Furthermore, two features, parent’s head
and head, require special attention. They have as values the words that represent
the head word2 for a given node in the parse tree. Due to lexical diversity, the
two features have a very large set of different values, i.e. words. This leads to
very large Decision Trees that cannot be handled by regular computers. We ap-
plied a set of transformations aimed at reducing the number of possible values for
head-words. Due to space constraints we do not specify the transformations (see
[10] for details). These transformations reduce the number of distinct values by
almost a half for the head and parent’s head features from 19,730 to 11,430 and
from 14,973 to 8,402, respectively.

5.2. Results. We conducted two types of experiments. In both experiments, the
training and test data was divided according to the function tag category (Gram-
matical, Form/Function, Topicalisation, Miscellaneous). An instance from Tree-
bank that has a composed tag such as LGS-TMP would lead to one instance for
the Grammatical and Function/Form categories each. We generate four different
classifiers, one for each category.

In a first experiment, we considered constituents with functional tags. From
each parse tree in Treebank only nodes with functional tags were used to generate
training and testing instances. Number of instances for the test data set are
given in the second column of Table 2. We obtained 118,483 training instances
for Grammatical, 66,261 for Form/Function, 3,751 for Topicalization and 16,630
for Miscellaneous. In the second experiment, we considered all internal nodes in
parse trees. We did not generate instances for leaf nodes corresponding to part-of-
speech tags. Nodes without a functional tag were assigned the new NON-F value
indicating no functional tag. A total of 827,193 training instances and 47,333 test
instances were generated.

Table 2 presents the results for the first experiment while Table 3 shows the
results for the second experiment. The figures represent results on the test data,
i.e. section 23 from Treebank. Each table also includes results for a baseline
approach. The baseline approach always assigns the most frequent tag from a
given category. For instance, for the Grammatical category the SBJ tag is the

2The head of a node in a syntactic parse tree is the word that gives most of the meaning
of the phrase represented by that node. There is a set of deterministic rules to detect the head
word of syntactic phrases [11].



LARGE SCALE EXPERIMENTS WITH FUNCTION TAGGING 31

Table 2. Performance Measures on Decision Trees (Experiment 1).

Category # Instances Errors Acc./Baseline Acc. Kappa

Grammatical 6907 21 99.70/81.79% 0.9901

Form/Function 3902 639 83.62/35.93% 0.7841

Topicalisation 261 0 100.00/100.00% 1.0000

Miscellaneous 755 4 99.47/84.45% 0.9807

Table 3. Performance Measures on Decision Trees (Experiment 2).

Category Accuracy Tag Precision Recall F-Measure Kappa

Baseline never tag always choose most likely tag

Grammatical 86.93% SBJ 10.53% 80.63% 18.63% 0

Form/Function 91.79% TMP 3.10% 37.79% 5.74% 0

Topicalisation 99.41% TPC 0.59% 100.00% 1.18% 0

Miscellaneous 98.44% CLR 1.31% 84.21% 2.59% 0

Decision Tree results

Grammatical 98.45% - 99.19% 90.14% 94.45% 0.9370

Form/Function 95.15% - 74.19% 52.54% 61.52% 0.6405

Topicalisation 99.87% - 86.80% 90.40% 88.56% 0.8849

Miscellaneous 98.54% - 61.75% 23.19% 33.72% 0.3318

most frequent and thus the baseline approach always assigns this tag. For the
first experiment, the baseline performance is shown as the second value in the
fourth column Acc./Baseline Acc. For the second experiment, since accuracy is
computed on both positive and negative instances the most frequent tag is the
newly introduced NON-F label that indicates no function tag.

From the tables we noticed high values for Kappa which suggest that Decision
Trees offer predictions that are in high agreement with the true, gold values.

The results of Experiment 1 in Table 2 are better than the results of Experi-
ment 1 reported in [10]. Only results of Experiment 1 in this work are directly
comparable with results in [10].



32 MIHAI LINTEAN (1) AND VASILE RUS(2)

6. Conclusions

We presented in this paper successful experiments with building Decision Trees
from large data sets. The paper shows how good Decision Trees are at predicting
function tags when trained on the whole Treebank data set. The proposed methods
significantly outperform a baseline approach. We plan to expand our research to
explore the feasibility of building one single Decision Tree that would assign all
function tags at once. A set of preprocessing step and a re-engineering of the
feature set may be necessary for that.

References

[1] M; Katz K Bies, A; Ferguson and R MacIntyre. Bracketing guidelines for treebank ii style.
Penn Treebank Project, 1995.

[2] D Blaheta and M Johnson. Assigning function tags to parsed text. In Proceedings of the
1st Annual Meeting of the North American Chapter of the Association for Computational
Linguistics, pages 234–240, Seattle, May 2000.

[3] Don Blaheta. Function tagging. PhD thesis, Brown University, August 2003. Advisor-Eugene
Charniak.

[4] J; Olshen R Breiman, L; Friedman and C Stone. A comparative analysis of methods for
prunning decision trees. IEEE Transactions on Pattern Analysis And Machine Intelligence,
19(5):476–491, 1997.

[5] E. Charniak. A maximum-entropy-inspired parser. In Proceedings of North American Chap-
ter of Association for Computational Linguistics (NAACL-2000), Seattle, WA, April 29 -
May 3 2000.

[6] M Collins. Three generative, lexicalised models for statistical parsing. In Proceedings of the
Thirty-Fifth Annual Meeting of the Association for Computational Linguistics and Eighth
Conference of the European Chapter of the Association for Computational Linguistics, 1997.

[7] V Jijkoun and M De Rijke. Enriching the output of a parser using memory-based learning.
In Proceedings of the ACL 2004, 2004.

[8] M Johnson. A simple pattern-matching algorithm for recovering empty nodes and their an-
tecedents. In Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, 2002.

[9] D. Lin. Dependency-based evaluation of minipar. In Proceedings of Workshop on the Eval-
uation of Parsing Systems, Granada, Spain, May 1998.

[10] M. Lintean and V. Rus. Naive bayes and decision trees for function tagging. In Proceedings
of the International Conference of the FLAIRS-2007, Key West, FL, May 2007 (in press).

[11] D.M. Magerman. Natural Language Parsing as Statistical Pattern Recognition. PhD thesis,
Stanford University, February 1994.

[12] J R Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
[13] E Witten, I ; Frank. Data Mining: Practical Machine Learning Tools and Techniques (Sec-

ond Edition). Morgan Kaufmann Publishers, 2005.

(1) Department of Computer Science, Institute for Intelligent Systems, FedEx In-
stitute of Technology, The University of Memphis, Memphis, TN 38152, USA

E-mail address: M.Lintean@memphis.edu

(2) Department of Computer Science, Institute for Intelligent Systems, FedEx In-
stitute of Technology, The University of Memphis, Memphis, TN 38152, USA

E-mail address: vrus@memphis.edu


