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EVOLUTIONARY COALITION FORMATION
IN COMPLEX NETWORKS

LAURA DIOŞAN, DUMITRU DUMITRESCU

Abstract. An optimal clusterization model is introduced and studied -
an approach that combines an evolutionary algorithm by the principles of
the physical spin systems. The method is used to investigate the process
of coalition formation that appears in complex systems. The numerical
experiments show that the proposed hybrid model is able to detect the
optimal clusterization in small and large systems by a reasonable cost of
complexity (seen in terms of time and physical computational resources).

1. Introduction

Almost all interesting processes in nature are highly cross-linked. In many
systems, however, we can identify the elements that interact to form com-
pound structures or functions. The interconnected simple elements can form
a complex system if they, together, exhibit a high degree of complexity from
which emerges a higher order behaviour. Examples of complex systems include
ant-hills, ants themselves, human economies, climate, nervous systems, cells
and living things, including human beings, the brain, the immune system, the
metabolic networks, the economic markets, and the human social networks,
as well as modern energy or telecommunication infrastructures, the Internet
and World Wide Web. Therefore, a complex system is any system featuring a
large number of interacting components, whose aggregate activity is nonlinear
and typically exhibits hierarchical self-organization under selective pressures.

More formally, a complex system is any system featuring a large number
of interacting components (agents, processes, etc.) whose aggregate activity
is nonlinear (not derivable from the summations of the activity of individual
components) and typically exhibits hierarchical self-organization under selec-
tive pressures [20].
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An interesting problem that appears in such complex systems is the pro-
cess of coalition formation. The optimization of several models proposed for
studying the coalition formation in complex system (politics, economics or so-
ciological systems) are based on simulated annealing [18, 16, 8] or on extremal
optimization [4, 6] methods. Both optimization techniques are rather time-
consuming and the necessary computational time increases strongly with the
system size. The evolutionary techniques could overtake this weakness. It will
be shown, in this paper, that the evolutionary methods can simulate very well
the true dynamic of such complex systems and they allow analysing the phase
transition from the viewpoint of the much-discussed social percolation [24],
where the emergence of a giant cluster is observed in many social phenomena.

Physical concepts might prove useful in describing collective social phe-
nomena. Indeed models inspired by statistical physics are now appearing in
scientific literature [22]. The process of aggregation among a set of actors
seems to be a good candidate for a statistical physics like model [21]. These
actors might be countries, which ally into international coalitions, companies
that adopt common standards, parties that make alliances, individuals that
form different interest groups, and so on. Given a set of actors, there always
exists an associated distribution of bilateral propensities towards either co-
operation or conflict. The question then arises as to: How to satisfy such
opposing constraints simultaneously?. In other words, what kind of alliances,
if any, will optimize all actor bilateral trends to respectively conflict or coop-
eration?

It turns out that a similar problem does exist in spin glasses (as Ising
or Potts models [11, 12, 14]). For these systems, the magnetic exchanges
are distributed randomly between the ferro and anti-ferromagnetic couplings.
Indeed such an analogy has been used in the past in a few models [21].

The aim of this paper is to provide a new hybrid model in order to inves-
tigate the process of coalition formation that can appear in a complex system.
Coalition setting among a set of actors is studied using concepts from the
theory of spin glasses and from the theory of evolution. Those of evolutionary
computation combine the principles of the Potts model. Unlike other solutions
proposed until now in order to study the dynamic of such complex system (sim-
ulated annealing or Monte Carlo methods), the proposed model is able to deal
with large systems and helps us to investigate different phenomena that ap-
pear in such systems. The numerical results indicate that the hybrid approach
is able to identify the characteristics of the coalition formation process.

The rest of the paper in organised as follows. A short description of the
coalition formation problem (and its real implications) is given in Section 2.
The Potts model is briefly described in Section 3. Section 4 proposes the
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hybrid evolutionary approach for investigating the process of coalition forma-
tion. Several numerical experiments are presented and discussed in Section 5.
Finally, the last section concludes the paper.

2. Problem formulation

Often-cited examples of complex systems in nature and society include
the gene networks, the immune networks that preserve the identity of organ-
isms, the social insect colonies, the neural networks in the brain that produce
intelligence and consciousness, the ecological networks, the social networks
comprised of transportation, utilities, and telecommunication systems, as well
as the economies [20].

The field of complex systems seeks to explain and uncover common laws for
the emergent, self-organizing behaviour seen in complex systems across disci-
plines. Many scientists also believe that the discovery of such general principles
will be essential for creating artificial life and artificial intelligence [20]. Com-
plex systems, as their name implies, are typically hard to understand. Tradi-
tionally the more mathematically oriented sciences such as physics, chemistry,
and mathematical biology have concentrated on simpler model systems that
are more tractable via mathematics. The rise of interest in understanding
general properties of complex systems has paralleled the rise of the computer,
because the computer has made it possible for the first time in history to make
models of complex systems in nature that are more accurate.

In recent years, there has been a strong upsurge in the study of networks
in many disciplines, ranging from computer science and communications to
sociology and epidemiology. Some of the areas can profit from the application
of complex systems modelling research and development: computational biol-
ogy (DNA sequencing, micro-array data analysis, genetic regulatory networks,
models of genetic regulatory processes), social systems (social networks, de-
cision processes and knowledge structures of multi-agent systems, economic
and financial markets modelling, homeland defence and intelligence commu-
nity), distributed knowledge systems(information retrieval, web technology
and digital libraries, knowledge integration), optimization, local search meth-
ods, extremal optimization, combinatorial optimization in biology, evolution-
ary systems (evolutionary algorithms, cellular automata and artificial life).

A network (or graph) is simply a collection of nodes (vertices) and links
(edges) between nodes. The links can be directed or undirected, and weighted
or un-weighted. Many natural phenomena can be usefully described in network
terms.
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Recent work [28, 3] have emphasized the importance of “network think-
ing” in dealing with complex systems in the real world. The purpose of char-
acterizing networks according to degree distribution, clustering coefficient and
average path length, is both to better understand networks from a scientific
point of view and to develop better technologies for designing and managing
networks in desired ways.

Another important application of network analysis is the problem of find-
ing clusters, or community structures, in a given network. This is the problem
of finding sub-networks (“communities”) that contain dense interconnections,
meaning that nodes in a given community are much more likely to be related
to nodes in that same community than to nodes in other parts of the network.
Finding such communities is related to the problem of graph partitioning in
computer science, and to the problem of hierarchical clustering in sociology.

A complex system can be reduced to a full-connected graph this time in
order to investigate the clusterization phenomena that appear in these systems.
The following clusterization problem is considered: we have a complete graph
on n vertices (items), where each edge (u, v) is labelled either + or− depending
on whether u and v have been deemed to be “similar” or “different”. The
notion of similarity of two vertices could be understood as a propensity for
cooperation or as a relation of sympathy or agreement between the two nodes.
The goal is to produce a partition of the vertices (a clustering) that agrees as
much as possible with the edge labels: a clustering that maximises the number
of nodes that collaborate within clusters and that minimises, at the same time,
the number of nodes that have antipathy relations

3. The Potts model

Understanding human thinking and learning has always been a great chal-
lenge for all the scientists and not only. The challenge has taken another
dimension as scientists are trying to simulate the learning and thinking pro-
cesses by using the computers and other devices. The nature inspired and
Physics models have been of great help.

Even though very simple, the Ising model and its generalization, the Potts
model, have been applied successfully in several computational problems. In
its original form, the Ising model describes the evolution of a grid of up and
down spins over time. Each spin can change its orientation in time, according
to the external temperature and the values of its orthogonal neighbours [1].
The Potts system involves similar dynamics for the spins, but each spin can
have more than two (up and down) orientations.

A simple version of a spin glass [19] consists of a d-dimensional hyper-cubic
lattice with a spin variable σi ∈ {−1, 1} placed on each site i, 1 ≤ i ≤ n. A
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spin is connected to each of its neighbours j via a bond variable Ji,j drawn
from some distribution P (J) with zero mean and unit variance [21].

The infinite-range p-state Potts glass is usually defined by the Hamilton-
ian: H(σ) = −p

∑
i

∑
j Jijδσiσj , where the σ(i) Potts states can take the

0, 1, 2, . . . , p − 1 values. The sum is extended over all N(N − 1)/2 pairs and
δmn = 1 if m = n and δmn = 0 otherwise. The Jij bonds are randomly dis-
tributed quenched variables with J0/N mean, and the variance is presumed
to scale as N−1. The system is non-trivially frustrated and computing the
thermodynamic parameters is a complex task. The above model has been
extensively studied by many authors through different methods [11, 14]. The
main idea of these models is to find the “ground states”, i.e., the lowest energy
configuration Smin of the Hamiltonian.

Neda et al. have considered a model resembling the infinite-range Potts
glass [21], which can be useful for considering the optimal clusterization prob-
lem or for understanding the coalition formation phenomena in sociological
systems. A difference to the Potts glass is that now the variance of the Jij

bonds scales as N−2. The authors [21] have considered an unrestricted number
of Potts states (p = N), and limit the study on the ground state (T = 0).

Therefore, this non-trivial optimization problem can be mathematically
formulated resembling a zero-temperature Potts glass type model. To prove
this, a cost-function, K, (a kind of energy of the system) has been defined.
This function has been increased by SiSj |Zij | whenever two conflicting actors
(i and j) are in the same coalition or two actors which have a tendency towards
collaboration are in different coalition. The cost-function is zero, when no
propensity is in conflict with the formed coalitions. The number of possible
coalitions is unrestricted (the maximal possible number is N), and the coalition
in which actor i is denoted by σ(i) [21]. The cost function then writes as

(1) K = −
∑

i<j

δσ(i)σ(j)ZijSiSj +
1
2

∑

i<j

(ZijSiSj + |ZijSiSj |)

The order parameter considered by Neda et al. in [21] has been the relative
size r of the largest cluster:

(2) r =

〈
maxi

{
Cx(i)

N

}〉

x

,

where Cx(i) stands for the number of elements in state i for an x realization
of the system [21].
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4. The evolutionary-based coalition model

Evolutionary algorithms (EAs) have been successfully applied in various
domains: mathematics, engineering, chemistry, physics, medicine, etc. The
great advantage consists of their ability to obtain more solutions in a single
run due to their capacity to deal with a population of solutions.

These algorithms have been introduced in 1965 by John Holland [15].
Many surveys in EAs and their applications can be found [7, 9, 13]. The
EAs use a population of feasible solutions. The population is randomly gen-
erated initially over the search space, which is the definition domain. These
solutions (called also chromosome, individuals) are improved by applying ge-
netic operators (like selection, mutation, crossover, etc.). Each individual from
the population is evaluated based on its fitness function. The best individuals
are selected at each generation by using this quality function. Many selection
mechanisms have been implemented [2, 13]. The chosen individuals are mod-
ified by applying the crossover and/or mutation operator. Various forms of
these operators can be found [10, 23, 25, 26]. New solutions are obtained in
this way. Some of these new solutions can be better than the existing ones.
There are many modalities to accept the new solutions (also called offspring)
in population. Some algorithms accept the new solution only if this solution
is better than his parent (or parents).

4.1. Motivation. Evolutionary Computation (EC) methods allow a quickly
and non-restrictive optimization, which is so useful in order to model the
complex systems. Why? Because the nature solved many problems, so any
algorithm showing the same behaviour might be good. EC can also handle
non-linear, high dimensional problems without requiring differentiability or
explicit knowledge of the problem structure. In addition, the evolutionary
algorithms (EAs) are very robust to time-varying behaviour, even though they
may exhibit low speed of convergence.

All these strengths of the EAs allow investigating the process of coalition
formation in complex systems: the appearance of social percolation and the
emergence of a giant cluster that is observed in many social phenomena.

For implementing a realistic dynamics for coalition formation one should
also take into account that coalitions are not formed instantaneously and si-
multaneously. Once an agent is assigned to a coalition, it can (and probably
will) change its propensities towards other agents. Agents will adjust their
propensities according to the already formed coalitions and this feedback pre-
sumably reduces the frustration in the system.

4.2. Representation. A hybrid model that uses the GAs in order to evolve
the realizations σ(i) of a network configuration who’s energy reaches a minimal
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value is proposed. Actually, each GA individual is a fixed-length string of
genes. The length of a chromosome is equal to the number of nodes from the
network. Thus, a GA chromosome represents a possible clusterization of the
network nodes in order to form an optimal coalition. Because the maximal
number of coalitions (or clusters) is equal to the number of network’s nodes,
each gene is associated to the index of such a cluster. Therefore, each gene is
an integer number from {1, 2, . . . , N} set (where N represents the number of
nodes from the network). Or, in terms of the Potts model, each gene gi from
a GA chromosome is associated to a Potts state σ(i).

For instance, for a network with N = 5 nodes (actors, elements) two
possible chromosomes could be:

a) C1 = (1, 2, 3, 4, 5) - this chromosome encodes a clusterization where
each group contains just an actor: gi 6= gj or σ(i) 6= σ(j), i = 1, 2, . . . N
(see Figure 1(a));

b) C2 = (1, 1, 3, 1, 5) - this chromosome encodes a coalition with 3 clusters
(see Figure 1(b));

1

2

34

5

(a)

1

3

5

1

1

(b)

Figure 1. Two possible configurations of the network in
which: (a) each group is only formed by an element (it corre-
sponds to the chromosome C1); (b) one group contains 3 nodes
(n1, n2, n4) and the other two groups contain 2 nodes each (n3

and n5, respectively) – it corresponds to the chromosome C2.
A dashed edge between two nodes i and j means that there
is no sympathy (no tendency for cooperation) between these
nodes and a solid edge means that the nodes i and j tend to
collaborate. The value associated to each node represents the
index of the cluster where that node is placed.

4.3. Initialisation. Regarding the chromosome initialization each gene of a
chromosome is initialized with a random value from the {1, 2, . . ., N} set; in
this case two or more nodes could take part to the same coalition from the
start of the search process (like in the previous example from Figure 1(b)).
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4.4. Fitness assignment. The array of integers encoded into a GA chromo-
some represents the structure of a coalition. In order to compute the quality
of a coalition, the cost function proposed by Neda et al. [21] has been used.
The simple case when Si = Sj = 1 and Zij = +1 with a probability q and −1
with a probability 1− q has been considered:

(3) f = −
N∑

i,j=1

Zij × δgi,gj , where: Zij = ±1, and δgi,gj =

{
1, if gi = gj

0, if gi 6= gj

A lower value of this function indicates a better quality. Therefore, the
GA has to solve a minimization problem.

For instance, the chromosome C2 (Figue 1(b)) is better than the chromo-
some C1 (Figure 1(a)) because:

• Fitness(C1) = 0 (because all Zij are -1 and all δgi,gj are 0);
• Fitness(C2) = −3.

4.5. Search operators. The search operators mainly used within the GA
are the crossover and mutation. Note that the action of the genetic operators
does not change the structure of the network (the interactions between the
actors). The crossover and the mutation change the coalitions only, which are
formed in the system.

4.5.1. Crossover. By crossover, two selected parents are recombined. For in-
stance, within the cutting-point recombination, two possible coalitions (one
from each parent) exchange the elements placed between the cutting-points.
A cutting point is considered within the following two parent chromosomes
after the third gene. The offspring provided by the recombination operation
are:

P1 = ( 1, 2, 3,|4, 5 ) O1 = ( 1, 2, 3, 2, 4 )

P2 = ( 3, 2, 1,|2, 4 ) O2 = ( 3, 2, 1, 4, 5 )

In Figure 2 is presented the network-based visualization of this crossover
operation.

4.5.2. Mutation. By mutation, some information inside a chromosome could
be changed. In other words, some of the network actors could change their
group affiliation. Therefore, by mutation, a gene change its value into another
one (off course, from the same discrete domain {1, 2, . . . , N}).
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Figure 2. Network-based crossover. Remark that the
crossover operation does not change the tendency for coop-
eration of the nodes from the network. The cluster affiliation
of some nodes is only modified.
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Figure 3. Network-based mutation. Note again that the net-
work structure is not changed.
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4.6. The algorithm. A GA [13] is used in order to evolve the coalition for-
mation. The steady-state evolutionary model [27] is used as an underlying
mechanism for the GA implementation. The algorithm starts by creating a
random population of individuals. The following steps are repeated until a
given number of generations is reached: two parents are selected by using a
binary tournament selection procedure. The parents are recombined in order
to obtain two offspring by performing a one cutting-point crossover. The off-
spring are considered for mutation. The best offspring O replaces the worst
individual W in the current population if O is better than W .

5. Numerical experiments

In this experiment the dynamic of the coalition formation through the
order r parameter (like in [21]) is studied in full connected networks (there is
a positive connection - a sympathy - or a negative connection - an antipathy -
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between every 2 nodes of the network). In addition to this study, the results
are compared to those computed by using Monte Carlo methods for small
systems (up to N ≤ 10). Several numerical results are presented also for
larger systems (e.g. N = 100 or N = 150).

5.1. Experiment 1. The GAs are used in order to obtain the optimal coali-
tion formation for small systems in which an exact enumeration is possible.
The exact enumeration means that one can computationally map the whole
phase-space (all σ(i) realizations) for a generated Zij configuration and de-
termine the minimum energy state. The order parameter considered is the
relative size r of the largest cluster.

Moreover, for N ≤ 7 it was also possible to map all the Zij configurations
as well. The results from [21] up to N ≤ 7 are thus exact. In the 7 < N ≤ 10
interval, although the minimum energy states are exactly found, due to greatly
increased computational time and memory needed, it was possible to generate
only a reasonable ensemble averaged for Zij (5000 configurations) [21]. The
results obtained by the evolutionary approach proposed in this paper up to
N ≤ 10 are averaged over the same reasonable ensemble of 5000 network
configurations.

Note that for each structure of the network Zij , i, j ∈ {1, 2, . . . , N} a GA
is run in order to find the optimal coalition formation. Therefore, the results
presented here are the corresponding r values for the best solutions found
by the evolutionary algorithm in the last generation. Moreover, in order to
obtain a realistic approach, the results are averaged over all 5000 network
configurations.

In this experiment, the GA works by 100 chromosomes that are evolved
during 100 generations. The crossover and the mutation operators are applied
by pc = 0.8 and pm = 0.1, respectively, probabilities.

The comparison exact enumeration is performed of two purposes. First,
the trends of the r(q) curves as a function of increasing system size is checked.
Secondly, these results offer a good ”standard” for the proposed optimisation
method, used for larger system sizes (in the next experiment). As the results
in Figure 4 show, the r(q) curves have a similar trend as those suggested by
Neda et al. in [21], i.e., as the system size increases, the slopes for r(q) are
increased around a non-trivial q value.

The GA results are in perfect agreement with the ones from exact enumer-
ations [21], giving confidence in to use evolutionary optimisation methods. In
addition, the complexity of the proposed approach is smaller than the complex-
ity of the traditional methods, which have been applied in order to investigate
the coalition formation process. Therefore, the time that is needed in order
to identify the optimal clusterization of the “actors” in such system by the
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Figure 4. Results of the dependence of the order parameter
as a function of q for different sizes of the network (N). For
comparison purposes on (a) the exact enumeration results are
shown and on (b) the GA optimisation results.

b)a)

evolutionary methods is reduced. Another, and maybe the most important
advantage of the proposed hybrid approach is the given by its ability of han-
dle non-linear, high dimensional problems without requiring differentiability
or explicit knowledge of the problem structure. This characteristic is very im-
portant and it favours a new direction in studying the phenomena that appear
in very large complex systems.

5.2. Experiment 2. In [21] the authors have considered two Monte Carlo
optimisation methods: the classical simulated annealing [17] and the recently
proposed extremal optimization method [4, 5]. Both approaches are rather
time-consuming and the necessary computational time increases sharply with
system size. The computational resources allowed the authors to study only
the systems by sizes up to N ≤ 60.

The evolutionary approach proposed in this paper is time-consuming also,
but the computational resources allow investigating the coalition formation in
systems by larger size. Therefore, the evolution of the order parameter r(q) is
analysed in four large systems: N = 25, N = 50, N = 75 and N = 100 with
a statistic of 100 realisations.

The GA parameters used in these experiments are presented in Table 1.
Even if, for the large systems, large populations are evolved during more gen-
erations than those used for small systems, the computational time that is
needed in order to obtain good solutions is reasonable.
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Table 1. GA parameters

N #Generations Population Size
25 100 100
50 100 200
75 2000 500

100 5000 5000

Figure 5. Results of the dependence of the order parameter
as a function of q for large systems. The optimal values of the
order parameter r are obtained by the evolutionary approach.
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The relationship of the order parameter as a function of probability q are
presented in Figure 5. From the numerical results presented in Figure 5 several
aspects can be remarked:

• when in the system there are more relations of collaboration than the
conflict ones (r → 1), usually the nodes tend to form a single cluster
in order to satisfy the conflicting interactions.

• when the tendency for collaboration is the same with that of conflict,
the order parameter is changing strongly with small variations of q.
Therefore, in this case, the process of coalition formation is sensitive
to the structure of relations within the network.

• when in the system there are more relations of conflict than the collab-
oration ones (r → 0), usually the nodes tend to form a large number
of clusters. For very small values of q (for very few relations of collab-
orations), the nodes tend to form the one’s own cluster (the number of
clusters tends to be equal to the number of elements from the network).
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6. Conclusions

A hybrid evolutionary framework has been proposed in this paper in order
to study the process of coalition formation that appears in complex systems.
Two types of full connected networks have been investigated: small networks
(up to 10 nodes) and large networks (from 10 up to 100 nodes), which are closer
to the real systems than the smaller ones. The numerical results obtained in
both cases indicate the relationship between the number of coalitions and the
structure of the network.

Future works will be focused on the study of the coalition formation in full
connected networks in which the relations (of collaboration or conflict) between
the elements are weighted (instead to have only +1 or −1 links between 2
nodes, some fuzzy relations will be defined on [−1, 1] range). The optimal
clusterization will be also investigated in networks that are more sophisticated:
random networks, small world networks, and scale-free networks.
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