STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LII, Number 2, 2007

AN AGILE MDA APPROACH FOR EXECUTABLE UML
STRUCTURED ACTIVITIES

I. LAZAR, B. PARV, S. MOTOGNA, I.-G. CZIBULA, AND C.-L. LAZAR

ABSTRACT. Agile processes allow developers to construct, run and test ex-
ecutable models in short, incremental, iterative cycles. However, the agile
development processes tend to minimize the modeling phase and the usage
of UML models, because UML is a “unified” (too general) language with a
lot of semantic variation points. The current version of UML together with
its Action Semantics provide the foundation for building object-oriented
executable models. But, constructing executable models using the existing
tools and the current standard notations is a tedious task or an impossible
one because of the UML semantic variation points. Agile MDA processes
try to apply agile principles in the context of executable models. This
paper presents a procedural action language for UML structured activi-
ties that allows developers to apply agile principles for executable models
that contains structured activities. New graphical notations for structured
activities are also introduced for rapid creation of tests and procedures.

1. INTRODUCTION

UML 2 [16] is the de-facto standard for modeling software systems. How-
ever, most commonly, UML models are used as blueprints that are fill in with
code, and the current agile development processes (e.g. agile model-driven
development [2], test-driven development [3]) tend to minimize the modeling
phase and the usage of UML models.

MDA framework [10] provides an approach for specifying systems indepen-
dently of a particular platform and for transforming the system specification
into one for a particular platform. But development processes based on MDA
are not widely used today because they are viewed as heavy-weight processes
- they cannot deliver (incrementally) small slices of code as soon as possible.

Received by the editors: November 19, 2007.

2000 Mathematics Subject Classification. 68N15, 68N30.

1998 CR Categories and Descriptors. D.2.2 [Software Engineering]: Design Tools
and Techniques — Computer-aided software engineering, Flow charts, Object-oriented design
methods; D.2.4 [Software Engineering]: Software/Program Verification — Programming
by contract, Assertion checkers; D.2.5 [Software Engineering]: Testing and Debugging —
Debugging aids, Testing tools;

101

102 I. LAZAR, B. PARV, S. MOTOGNA, 1.-G. CZIBULA, AND C.-L. LAZAR

In this context, executing UML models became a necessity for development
processes based on extensive modeling. For such processes models must act just
like code [18]. UML 2 and its Action Semantics [16] provide the foundation to
construct executable models. In order to make a model executable, the model
must contain a complete and precise behavior description. But, creating a
model that have a complete and precise behavior description is a tedious task
or an impossible one because of many UML semantic variation points.

Ezecutable UML [19] means an execution semantics for a subset of actions
sufficient for computational completeness. Two basic elements are required for
such subsets: an action language and an operational semantics. The action
language specifies the elements that can be used and the operational semantics
establishes how the elements can be placed in a model, and how the model
can be interpreted.

Several tools [5, 24, 1, 7] have defined non-standard subsets of actions
that make UML a computational-complete specification language. The oper-
ational semantics of a standard subset of actions sufficient for computational
completeness is still in the process of standardization [12].

Debugging and testing executable models early in the development process
help to validate parts of the model and to improve it. Model-level Testing and
Debugging Specification [15] and UML Testing Profile [13] define a standard
infrastructure for testing and debugging at the PIM (Platform Independent
Model), PSM (Platform Specific Model), and implementation levels. The
above specifications allow glass box and black box testing of application based
on models.

1.1. The Problem and Motivation. As identified above, a framework for
executing UML structured activities should be based on the following elements:

e An agile MDA process that allows developers to construct, run and
test executable models in short, incremental, iterative cycles. Glass
box and black box testing must also be provided.

e A small subset of actions sufficient for computational completeness
together with simple graphical and textual notations for representing
the action language elements.

e Model management operations for model transformation and valida-
tion.

Agile MDA processes. An agile MDA process [18] applies the main Agile Al-
liance principles (e.g. testing first, imediate execution [2, 3]) into a classical
MDA process [10, 8].

AN AGILE MDA APPROACH FOR EXECUTABLE UML STRUCTURED ACTIVITIES103

Some of the existing tools provide glass boxr and black box testing using
non-standard infrastructures, but these techniques must be alligned today
with the standard specifications for debugging and testing [15, 13].

Subsets of actions sufficient for computational completeness. As noted before,
the standardization efforts for defining a subset of actions sufficient for compu-
tational completeness are in progress [12], while existing tools provide several
action languages.

As described in [9] the ideas behind existing proprietary tools are quite sim-
ilar. The process of creating executable models can be generalized as follows:
(a) the system is decomposed as a set of components, (b) each component is
detailed using class diagrams, (c) the behavior of each class is detailed using
state machines, and (d) the actions used in state diagrams are specified using
a proprietary action language.

There are action languages [5, 24, 1] whose elements are translatable into
the basic concepts defined by the UML 2 Action Semantics, and action lan-
guages based on OCL [21] which extends OCL query expressions and adds side-
efects capability to OCL. However, all these languages provide only concrete
syntaxes and do not provide simple graphical notations for activity diagrams.

Model management operations. Meta-Object Facility [11] is a metamodeling
language that provides core facilities for defining new modeling languages
including model transformation languages. Another well-known and widely
used framework for implementing model management is the Eclipse Modelling
Framework (EMF) [6].

There are several defined languages for model transformation and valida-
tion. The Epsilon Object Language (EOL) [17] is a metamodel independent
language built on top of OCL [14]. Kermeta [7] is a metamodelling language,
compliant with the EMOF component of MOF 2.0, which provides an action
language for specifying behaviour. Kermeta is intended to be an imperative
language for implementing executable metamodels [7].

1.2. The Solution. The proposed solution is a framework for constructing
and executing UML structured activities. The framework refers only to UML
structured activities because our first objective is to allow model transforma-
tion from PIM to procedural constructs of imperative languages. This frame-
work for structured activities is part of ComDeValCo - Component Definition,
Validation, and Composition framework [23].

As part of this framework we define a procedural action language (PAL),
that is a concrete syntax for UML structured activities, and graphical nota-
tions for some UML structured activity actions.

104 I. LAZAR, B. PARV, S. MOTOGNA, 1.-G. CZIBULA, AND C.-L. LAZAR

|_:ﬁl:méa_hieiraluenc’tiun I—VM,_AH;;.irELﬁJF|
] i |

| ==azsignment== |

q=5+1 variabhlf B m:u!r_l.ﬂ.ction
: ; o Varisble || FunctionBehashafavior | i CallBehaviorastion |
(a) Graphical notation L L

| 45 —
[argumerrt atgument

i :Read\.fariahlenctiurff?mmm“@ : ActionlnputPin | | : ActionlnputPin |
i L i 1

qg=s+1; S T e —— J ;
| £: Variable | I__—g_:klfﬂntei_ e itamiction
() PAL syniax R | valug =1 —| : ValueSpecificationAction |

(c) UML Repository Model - Full Model
| éécva-lun-a-SpeciEicatinn}; =

1 e - - A cfunctionBehaviorss | [<=addVariablsValugss |
s=readvariahles: | — .= L
| I | + [== g | q
& | 5 :

() UML Activity - Fush Model

FIGURE 1. Assignment: q := s + 1

One of the main idea for simplifying the construction of UML structured
activities is to use the pull data flow for expression trees. The pull model means
that actions requiring data initiate other actions that provide it. Figure 1-(d)
shows the push model for evaluating the expression s+1 and adding the result
to an activity variable ¢. As shown in [4], when modeling expressions using
the push data flow the control arrives at leaves of the expression tree, then
the data cascades through the root, producing the final result. But modeling
expression trees using the push model is a tedious task.

The proposed framework uses the pull model for expression trees. Figures
1-(a) and 1-(b) shows the graphical and textual notations for the assignment ¢
:= s + 1. Both notations can be compiled to the same UML repository model
presented Figure in 1-(c).

We also propose new graphical notations for conditionals and loops. The
graphical notations do not follow Nassi-Schneiderman notations [22] for struc-
tured programming. For simplicity we propose the classical flowchart graphical
notations.

The framework also includes an Agile MDA approach for constructing,
running and testing models. Debugging and testing techniques are also in-
cluded according to the new released standards [15, 13].

In order to be able to exchange executable models with other tools, a UML
profile is also defined. The profile defines the mapping between PAL and UML
constructs and is similar to the profile defined for AOP executable models [9)].

The paper is organized as follows: after this introductory section, the
next one presents our agile MDA approach. The third section presents the

AN AGILE MDA APPROACH FOR EXECUTABLE UML STRUCTURED ACTIVITIES105

Procedural Action Language. The last section contains some conclusions and
future work.

2. OUur AGILE MDA APPROACH

Our approach is illustrated using an example program that computes the
integer square root (isqrt) of a positive integer. isqrt(s) is the positive integer
r which is the greatest integer less than or equal to the square root of s.

In order to develop a program we construct a UML model that contains
functional model elements and test case model elements. Functional model
elements correspond to the program and its operations and are represented as
UML activities. Test case model elements are also UML activities and they
represent automated tests written for some selected functional model elements.

For instance, our model for the above example contains the following ele-
ments: an isqrtProgram activity for program, an isqrt activity for computing
the integer square root, and a testlsqrt activity which is a test case for isqrt
activity. The creation order of these model elements is as follows.

1: First we create the test case model (i.e. testlsqrt activity for isqrt
operation) starting from the above informal specification. At this
stage we try to understand the requirements by writing test scenarios
using UML structured activity constructs.

2: Formal pre and post conditions of isqrt are written after the test case
is created. We can return at step 1 to complete the test scenarios
based on the defined formal specification.

3: Finally, we define isqrt and isqrtProgram activities using UML struc-
tured activity nodes. To allow glass box testing we can mark the func-
tional model elements according to UML Model-level Testing and De-
bugging Specification.

The examples presented in this section contain PAL graphical and textual
notations that will be described in the next section.

2.1. Test-first Design Steps. Our proposed agile MDA process includes the
test-first design steps [3] as follows. For each new feature of the system we
apply the bellow steps.

Add a test. The first step is to quickly add a test. Figure 2 shows a test
case for isqrt, expressed using (a) a graphical notation and (b) a textual no-
tation. Figure 2-(a) contains an activity diagram that shows testIsqrt activity
stereotyped with testCase defined by UML Testing Profile [13]. The assert
stereotype defined by our profile is used to make assertions and can be applied
for UML 2 CallBehaviorActions. Figure 2-(b) presents the concrete syntax of
PAL corresponding to testlsqrt activity.

106 I. LAZAR, B. PARV, S. MOTOGNA, 1.-G. CZIBULA, AND C.-L. LAZAR

| : CallBehaviorAction |

._) ==aFIert=s _tge aav_i:_._r_
| O=isqrt(ly 1. operation testlzqrt() | = FunstionBehavior |
<<iesiCase>> | 2 __Srgumepit, L—————————largument,
testlsqrt | zozssertss 3 assert: 0 = isgrt(0); | : ActioninputPin | | : ActioninputPin |
lsisand) 4. assert: 1 =isqrt(3); 1 B _
3 I 5 assert: 3 = isqrt(9),; | : CallBehaviorAction | | : WalueSpecificationAction !
[s=mssert=» : s T = T]
. = 6 } | CHibgy SRS ST g gy | e o AT R P —1
O | 3=isqri(9) isqrt : Behavior ‘ | :Literalinteger |
| value=10 |
L |
(a) Graphical notation (b) Concrete syntax (c) Snapshot of UML representation for 0 = sqri(0)

FIGURE 2. Isqrt Test Case

Developers can write the tests using the graphical or the textual nota-
tions. Both notations are compiled into the same UML repository model as
shown in Figure 2-(c), where a snapshot is presented without pin and param-
eter objects. For easy of use the framework allows developers to write inline
expressions when they construct activities. Inline expressions are represented
and evaluated according to the pull model for actions.

Run the tests. The second step is to run all the tests to ensure that the new
test fails. In order to run the tests the model is verified and the missing
elements are reported - in this example isqrt operation. The framework helps
developers to generate the missing elements as Figure 3 shows.

, 1. operation isqrt(in 5 Integer): Integer
<<operation=> isqrt L) 2 preis=10;
Parameter: [#=returnss | 3. postir): (% == gy and (5 < (pE 1+
in s: Integer; o 4,
return r: Integer (J{‘ 5 g
|"!/'| 3 }
(a) Graphical netation (b) Concrete symiax

F1GURE 3. Automatically Generated isqrt Operation

At this stage developers can write pre and post conditions expressed as
OCL expressions [14]. The syntax of PAL includes pre and post constructs as
Figure 3-(b) shows. The expressions specified in pre and post sections will be
used when the system is run - see section 2.2.

AN AGILE MDA APPROACH FOR EXECUTABLE UML STRUCTURED ACTIVITIES107

“<pperation=> isqri
Parameter:

in s: Integer; return r: Integer
.—)q i gi=s+1 i

1. operation isgrifin s Integer): Integer

2

3

4.

. 5 war g Integer =s+ 1;
’ i

~

a

pre: s ==
postit): (v * r <=3) and {5 < (rH ¥+

Wariable: :
o Integer Erd war 7 Integer = 0,
t: I.rrteger l/ 1 swhile (r +1 <> q_:l {
r lfalse] ML2T 520 : loopInvartant: (r * r<=s) and (s < q * q);
l’ l[true] 9 loopWarant: r+ 1 - g;
(@) p=(r+qdiv2 | 10, varp: Integer;
: \L - 11, p={+gdvi
“Variahle: A .__:S = pp 12 if (s = p*p) { q =, }
TN alear [trie] 13, else {r=p;}
-r:=.|:| s -q:.=|.:| 14. 3
- d 15 assertr+1=gq;
_(_J 16, retumt;
17.}
(a) Graphical notation (h) Concrete syntax

FIGURE 4. Isqrt Operation Definition

Add production code. The third step is to update the functional code to make
it pass the new test. Figure 4 shows the definition of isqrt operation, without
showing the stereotypes in order to save space.

As for writing test cases, developers can use either the graphical notation or
the concrete syntax of PAL. Figure 4-(b) contains statements that corresponds
to an assertion based language [25]. The framework allows and encourages
developers to apply design by contract principles [20]. The assert statement
corresponds to data assertions - conditions that must hold at a particular
location in the code, as defined in [25]. The loopInvariant statement can be
used inside loops and it is a particular data assertion that states what must
hold in each repetition of a loop. The loop Variant statement introduces a
strictly monotonic decreasing function used for loop termination. All these
constructs can be used when the program is run - see section 2.2.

Run the tests. The fourth step is to run the tests again. Once the tests pass
the next step is to start over implementing a new system feature.

2.2. Debugging Techniques. How to enter input data for executable models
and how to start the execution represent two requirements for executable
models [12]. Programs represent in our framework the entry points for model
execution. Like operations, programs are also modeled as UML activities.
PAL contains input and output statements that allow developers to enter data

108 I. LAZAR, B. PARV, S. MOTOGNA, 1.-G. CZIBULA, AND C.-L. LAZAR

before model execution and to view the program results. In this context
running a model means starting the execution from an activity stereotyped
with program.

Figure 5 shows a program that reads an integer, computes the integer
square root of that value, and writes the result. When the program is run
the user is prompted to enter an integer value and the results are sent to a
console.

o ==input=>» 1. program izgqrtProgram;
| m |
/ 2
<L Tam== —T—
isprnt]Pgm i 51f 3. war m Integer;
! g [==assignment== 4 war n: Integer,
“ariable: | ni=ieqrtim) | 5 readm;
m: Integer — o :
m: Integer - 6. n:= isgrt(m);
e [==outputss | . wrtte n;
®— 2 1
_ (a) Graphical notation (h) Concrete syntax

FIGURE 5. Isqrt Program

The debugging techniques are defined according to Model-level Testing
and Debugging Specification [15]. Figure 6 presents an extract of the in-
frastructure of our framework. All classes except ModelEditor and Debugger
classes, belong to the Test Instrumentation Interface (TII) metamodel from
[15]. In our context, the system under test (SUT) contains only a Deployed-
Component which is a program. Breakpoint represents a location or incident
within the program that is of interest. IncidentBreakpoints can be set on
any named element within a model and ActionSemanticBreakpoints can be
set only on actions. Incident and action breakpoints can be set manually on

‘ sSuT |(_|Dehugger| -action : Action
0

ModelEditor |
IncidentBreakpoint
a.x T qu

| (—‘[Iepluyed(:nmpunen‘t 0.* Breakpoint -namedElement : MatmedElement
HotificationCallback

ActionSemanticBreakpoint

FIGURE 6. Debugging Infrastructure

model elements when the model is constructed (using the ModelEditor). After
Debugger is started, it notifies the editor when incident and action breakpoints
are encountered.

AN AGILE MDA APPROACH FOR EXECUTABLE UML STRUCTURED ACTIVITIES109

Another option is to inspect the program execution regarding the built-
in assertion based constructs (pre, post, assert, loop Variant, loopInvariant).
The Debugger component can automatically generate incident breakpoints (a)
when encountering assertions, loop invariants, and loop variants, (b) before
entering a method - breakpoint set on precondition, and (c) before returning
from an operation - breakpoint set on postcondition.

When the debugger is paused developers can inspect the program state,
evaluate expressions that use program elements, including the expressions of
assertion based constructs.

3. PROCEDURAL ACTION LANGUAGE

The Procedural Action Language (PAL) is introduced to simplify the con-
struction of UML structured activities. PAL defines a concrete syntax for rep-
resenting UML structured activity nodes for loops, sequences of actions and
conditionals. The PAL syntax is also used for writing assignment statements
and expressions in structured activity nodes. PAL also includes assertion
based constructs as described in the previous section. For these expressions,
PAL uses OCL expressions.

Program
0. Statement |
-name : String Operation f-'l‘— -
-returnType : Type
. Sy DefStatement
I el SHhg StatementBlock
==enumeration== Variable -variahle : String
Parameter -bype : Type
Direction -name ; String ComplexStatement
7 type : Type InputStatement
aut L L variable : Wariahle
inout |Luop5tatement | ConditionalStatement
e OutputStatement
-test : LogicalExpression
Parameter =
#‘ -value : Expression
-name ; String WhileStatement
type : Type — - |r'3'“'“"“‘““| AssignmentStatement
-direction : ParameterDirection -est : LogicalExpression o

% -variahle ; Varishle
ElseStatement -expression ; Expression

FIGURE 7. Snapshot PAL Abstract Syntax

Figure 7 presents a snapshot of the core part of the abstract syntax of the
language. The missing parts of the abstract syntax refer to expressions and
assertion based statements. A PAL profile (see Figure 8) is defined in order
to be able to exchange models with other UML 2 compliant tools.

3.1. Operations and Program. As the examples from Figure 5 and 4 show,
the programs and procedures corresponds to UML activities. A UML Activity

110 I. LAZAR, B. PARV, S. MOTOGNA, 1.-G. CZIBULA, AND C.-L. LAZAR

==metaclazs== ==tetaclasss= ==metaclazsss | | ==metaclass==
Activity AddVariableValueAction LoopHode Opaquefction
ias‘tereo‘t\;pe»-? r:ﬂs{ereutype>>: EI::s‘tereut‘ype::‘i l::s‘tereo‘type>>i qus‘tereutype::“ «s‘tereo‘f\;pe»
program | operation assignment input while | writeParameter
. - - - ;.—parameter: Parameter
==metaclass== ==metaclasss> ==metaclass== % 4
CallBehavior Action Constraint | |ConditionalHode
[c=sterectypess | [<=sterectypess | [<=stersctypess | [<=stereotype=» | ==sterentypess
output loopVariant assert if readParameter
. o "'f))) -parameter : Parameter
|z=sterectypes= | |==sterentype== | } =

return looplnvariant

FIGUurE 8. PAL UML Profile

has parameters, local variables, preconditions and postconditions, so we have
a direct mapping from PAL Program and Procedure meta classes to the UML
Activity meta class.

Al
==FECUENCEs>
b
|statement]
i . [statement]) st
statementl ; !
statement2; ____l e |
H [[statement 2 ' .0 7 !
¥
(a) Textual notation (b) Graphical notation (c) Graphical notation without showing

the sequence node container

FIGURE 9. Statement Blocks and UML Sequence Nodes

3.2. Statement Blocks and UML Sequence Nodes. An UML sequence
node is a basic structured node that executes a series of actions in order.
The PAL statement blocks correspond to UML sequence nodes. The UML 2
standard does not indicate a standard graphical notation for sequence nodes.
Our proposed graphical notations for sequence nodes are presented in Figure

9-(a) and (b).

3.3. Variable Definition and Assignment Statements. The PAL vari-
able definition statements can be placed inside statement blocks and can also
have expressions for initializing their values. The PAL variables are mapped

AN AGILE MDA APPROACH FOR EXECUTABLE UML STRUCTURED ACTIVITIESI11

to UML Activity or StructuredActivityNode variables. For instance the vari-
able p defined in line 10 of Figure 4-(b) belongs to the UML loop node that
contains the variable definition, while the local variables ¢ defined in line 5 of
Figure 4-(b) belongs to isqrt activity.

The UML AddVariable ValueActions correspond to PAL assignment state-
ments because the left hand side of a PAL assignment is restricted to be a
variable. As noted in section 1 we add the constraint for using the pull action
model for evaluating the right hand side expression - which is represented and
evaluated as a CallBehaviorAction.

3.4. If Statement and UML Conditional Node. The PAL IfStatements
correspond to UML ConditionalNodes. In case the else part is missing, the cor-
responding UML ConditionalNode has only one Clause, otherwise two Clauses.
For simplicity we restrict the body of UML clauses to be sequence nodes. The
proposed graphical notations for if statements are presented in Figure 10-(a)
and (b) (UML 2 standard does not indicate a standard graphical notation for
sequence nodes).

WL | .
[~eif= [true] el e i
i ST, fcenes | test
lf(::::g];{wnﬂ; : ==zequences== | “2zeqUenCes: | [tr e Ize]
| B " t j
else { | (Statement1) | statemeni2| | | [statementl| |statement2
statement?; I E g - =
i [¥ L—’ﬁ:l:::-hj
‘.- 2 v
by
(a) Textual notation (h) Graphical netation (c) Graphical notation without showing

conditional and sequence node containers

FiGure 10. If Statement and UML Sequence Nodes

3.5. While Statement and UML Loop Node. Pre tested UML LoopN-
odes correspond to PAL while statements. Similar to conditional nodes we
restrict the body part loop nodes to be sequence nodes.

3.6. Other Statements. The PAL input statements correspond to UML Ad-
dVariable ValueActions. The grahical notation must only indicate the variable
- the right hand side must be undefined.

The output, return, and loop variant statements are CallBehaviorActions,
that is all indicate an expression to be printed, returned, respectively checked.

112 I. LAZAR, B. PARV, S. MOTOGNA, 1.-G. CZIBULA, AND C.-L. LAZAR

e
| i ==wyhile== |
e
while (test) { | | J;f =t
statement; | o I \[faﬁﬂ.::_. _,-E
H Ly [#EgEyUEnCE:=
| l ftruel |
| | — | | statement |
| statement | :
| | R — .- . |
Sefpiis aslesgon i mingge osingigh
-
a) Textual notation Graphical notation (c) Graphical notation witheut showing
rap

loop and sequence node containers

FiGurE 11. While Statement and UML Loop Node

The assertion based statements, assert and loop invariant, are mapped to
UML Constraints or CallBehaviorActions. The loop invariant statement is
restricted to be applied only inside loop nodes.

4. CONCLUSIONS AND FUTURE WORK

In order to obtain an agile MDA framework for UML structured activities,
this paper has introduced a Procedural Action Language and a corresponding
UML profile. A concrete syntax and new graphical notations for structured
activities have also been defined for this language. The introduced textual and
graphical notations can be used to easily construct, run and test executable
models according to Agile Alliance principles. Models based on the introduced
profile can be constructed with any UML tool, or can run in any UML tool
with execution capabilities.

As future work we intend to extend the language with object oriented
constructs. Such a language should also support mappings to general UML
2 activities. Additionally, model transformation capabilities must also be ex-
tended.

We also intend to add refactoring techniques to the presented Agile MDA
approach in order to become a test-driven development method for executable
models.

ACKNOWLEDGEMENTS

This work was supported by the grant ID_546, sponsored by NURC -
Romanian National University Research Council (CNCSIS).

AN AGILE MDA APPROACH FOR EXECUTABLE UML STRUCTURED ACTIVITIES113

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
21]
[22]

[23]

[24]

REFERENCES

Telelogic AB. UML 2.0 Action Semantics and Telelogic TAU/Architect and
TAU/Developer Action Language, Version 1.0. 2004.

Scott Ww. Ambler. Agile Model Driven Development (AMDD).
http://www.agilemodeling.com/essays/amdd.htm, 2007.

Kent Beck. Test-Driven Development By Example. Addison Wesley, 2002.

Conrad Bock. Uml 2 activity and action models, part 6: Structured activities. Journal
of Object Technology, 4(4):43-66, 2005.

Kennedy Carter. The Action Specification Language Reference Manual.
http://www.kc.com/, 2002.

Eclipse.org. Eclipse Modelling Framework. http://www.eclipse.org/emf.

Pierre-Alain Muller et al. On executable meta-languages applied to model transforma-
tions. In Model Transformations In Practice Workshop, Montego Bay, Jamaica, 2005.
Susumu Hayashi et al. Test driven development of uml models with smart modeling
system. In Lecture Notes in Computer Science, volume 3273, pages 395-409, 2004.
Lidia Fuentes and Pablo Sanchez. Designing and weaving aspect-oriented executable
uml models. Journal of Object Technology, 6(7):109-136, 2007.

Object Management Group. MDA Guide Version 1.0.1.
http://www.omg.org/docs/omg/03-06-01.pdf, 2003.

Object Management Group. Meta Object Facility (MOF) 2.0, Core Specification.
http://www.omg.org/cgi-bin/doc?ptc/04-10-15/, 2004.

Object Management Group. Semantics of a Foundational Subset for Ezecutable UML
Models RFP. http://www.omg.org/cgi-bin/apps/doc?ad/05-04-02.pdf, 2005.

Object ~ Management Group. UML 2.0 Testing Profile Specification.
http://www.omg.org/cgi-bin/apps/doc?formal/05-07-07.pdf, 2005.

Object Management Group. Object Constraint Language Specification, version 2.0.
http://www.omg.org/cgi-bin/apps/doc?formal /06-05-01.pdf, 2006.

Object Management Group. Model-level Testing and Debugging.
http://www.omg.org/cgi-bin/doc?ptc/2007-05-14/, 2007.

Object Management Group. UML 2.1.1 Superstructure Specification.
http://www.omg.org/cgi-bin/doc?ptc/07-02-03/, 2007.

Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. The epsilon object
language (eol). In Proc. of European Conference in Model Driven Architecture (EC-
MDA), pages 128-142, Bilbao, Spain, 2006.

Stephen J. Mellor. Agile mda. Technical report, Project Technology, Inc., 2005.
Stephen J. Mellor and Marc J. Balcer. Ezecutable UML: A Foundation for Model-Driven
Architecture. Addison Wesley, 2002.

Bertrand Meyer. Applying design by contract. Computer, 25(10):40-51, 1992.

P.-A. Muller, P. Studer, F. Fondement, and J. Bzivin. Platform independent web
application modeling and development with netsilon. Software and System Modeling,
4(4):424-442, 2005.

I. Nassi and B. Schneiderman. Flowchart techniques for structured programming. ACM
Sigplan Notices, 8(8):12-26, 1973.

Bazil Parv, Simona Motogna, loan Lazar, Istvan-Gergely Czibula, and Codrut-Lucian
Lazar. Comdevalco - a framework for software component definition, validation, and
composition. Studia Univ. Babes-Bolyai, LII(2), 2007.

Inc ProjTech AL: Project Technology. Object Action Language. 2002.

114 I. LAZAR, B. PARV, S. MOTOGNA, 1.-G. CZIBULA, AND C.-L. LAZAR

[25] Herbert Toth. On theory and practice of assertion based software development. Journal
of Object Technology, 4(2):109-129, 2005.

DEPARTMENT OF COMPUTER SCIENCE, FACULTY OF MATHEMATICS AND COMPUTER
SCIENCE, BABES-BoLYAl UNIVERSITY, 1 M. KOGALNICEANU, CLUJ-NAPOCA 400084, Ro-
MANIA

E-mail address: {ilazar,bparv,motogna,czibula}@cs.ubbcluj.ro

