STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LII, Number 2, 2007

A STUDY ON CLUSTERING BASED RESTRUCTURING OF
OBJECT-ORIENTED SOFTWARE SYSTEMS

ISTVAN GERGELY CZIBULA AND GABRIELA SERBAN

ABSTRACT. The structure of a software system has a major impact on its
maintainability. Refactoring is an activity performed through the entire
lifecycle of a software system in order to keep the software structure clean
and easy to maintain. We have previously introduced in [3] a clustering
approach for identifying refactorings in order to improve the structure of
software systems. The aim of this paper is to make a comparative analysis
on several clustering algorithms (developed based on the approach from [3])
which can be used in order to recondition the class structure of a software
system. Based on this analysis, we highlight the advantages of determining
refactorings of object-oriented software systems using clustering.

1. INTRODUCTION

The structure of a software system has a major impact on the maintain-
ability of the system. This structure is the subject of many changes during the
systems lifecycle. Improper implementations of these changes imply structure
degradation that leads to costly maintenance.

A continuous improvement of the software systems structure can be made
using refactoring, that assures a clean and easy to maintain software structure.

In [6] Fowler defines refactoring as “the process of changing a software
system in such a way that it does not alter the external behavior of the code
yet improves its internal structure. It is a disciplined way to clean up code
that minimizes the chances of introducing bugs”. Refactoring is viewed as a
way to improve the design of the code after it has been written. Software
developers have to identify parts of code having a negative impact on the
system’s maintainability, and to apply appropriate refactorings in order to
remove the so called “bad-smells” [1].

Received by the editors: October 20, 2007.

2000 Mathematics Subject Classification. 68N99, 62H30.

1998 CR Categories and Descriptors. D.2.7 [Software Engineering]: Distribution,
Maintenance, and Enhancement —Restructuring, reverse engineering, and reengineering;
1.5.3 [Computing Methodologies|: Pattern Recognition — Clustering.

93

94 ISTVAN GERGELY CZIBULA AND GABRIELA SERBAN

We have previously introduced in [3] a clustering approach for identifying
refactorings in order to improve the structure of software systems. For this pur-
pose, a clustering algorithm named kRFED was introduced. To our knowledge,
there is no approach in the literature that uses clustering in order to improve
the class structure of a software system, excepting the approach introduced in
[3]. The existing clustering approaches handle methods decomposition ([15])
or system decomposition into subsystems [10].

We have improved the approach from [3] by developing several clustering
algorithms that can be used to identify the refactorings needed in order to
recondition the class structure of an object-oriented software system: HAC
[14], PAMRED [11], HARED [2|, HARS [12] and PARS [13]. These algorithms
are based on the on the idea of partitional and hierarchical clustering.

The rest of the paper is structured as follows. The main aspects related
to clustering, to the approach for determining refactorings using clustering [3]
and to the clustering algorithms previously developed are presented in Section
2. The comparative study between the clustering algorithms for identifying
refactorings of object-oriented software systems is made in Section 3. An ex-
periment on a real software system is reported in Section 4. Some conclusions
and further work are given in Section 5.

2. BACKGROUND

2.1. Clustering. Clustering [8], also known as unsupervised classification, is
a data mining activity that aims to differentiate groups (classes or clusters)
inside a given set of objects, @. The measure used for discriminating objects
can be any metric or semi-metric function d : O x O — R, called distance.
A large collection of clustering algorithms is available in the literature ([8]).
Most clustering algorithms are based on two popular techniques known as
partitional and hierarchical clustering.

2.2. A Clustering Approach for Refactorings Determination - CARD.
In this subsection we briefly describe the clustering approach (CARD) that
was previously introduced in [3] in order to find adequate refactorings to im-
prove the structure of software systems. CARD approach consists of three
steps:

e Data collection - The existing software system is analyzed in order
to extract from it the relevant entities: classes, methods, attributes
and the existing relationships between them.

e Grouping - The set of entities extracted at the previous step are re-
grouped in clusters using a clustering algorithm. The goal of this step
is to obtain an improved structure of the existing software system.

A STUDY ON CLUSTERING BASED RESTRUCTURING OF SOFTWARE SYSTEMS 95

e Refactorings extraction - The newly obtained software structure is
compared with the original software structure in order to provide a list
of refactorings which transform the original structure into an improved
one.

As described above, at the Grouping step of CARD, the software sys-
tem S has to be re-grouped. This re-grouping can be viewed as a parti-
tion of S. We mention that a software system S is viewed in [3] as a set
S = {s1,52,..., Sn}, where s;,1 < i < nis an entity from the system (it can be
an application class, a method from a class or an attribute from a class). In
our clustering approach, the objects to be clustered are the entities from the
software system S. Our focus is to group similar entities from S in order to
obtain high cohesive groups (clusters).

2.3. Clustering Algorithms for Refactorings Determination. We have
developed several clustering algorithms that can be used in the Grouping step
of CARD in order to find an improved structure of a software system: kRED
(3], HAC [14], PAMRED [11], HARED [2], HARS [12] and PARS [13].

In order to apply a clustering method for refactorings extraction, a distance
function between the entities from a software system has to be defined. This
distance has to express the idea of cohesion between the entities from the
software system.

We have defined in [3] a modality to compute the dissimilarity degree diss
between any two entities from the software system S. diss is a semi-metric
and expresses the distance between the entities from the software system and
emphasizes the idea of cohesion. The dissimilarity degree diss highlights the
concept of cohesion, i.e., entities with low distances are cohesive, whereas
entities with higher distances are less cohesive.

In developing our clustering algorithms, we have used two approaches:

e The first approach is to use a vector space model based clustering.
We have defined a vector space that characterizes the entities from
S and, based on diss, we have used distance metrics (Euclidian dis-
tance, Manhattan distance, Hamming distance) in order to express the
dissimilarity between the entities from the software system. In this
direction we have introduced two vector space model based clustering
algorithms kRED and HAC that can be used in the Grouping step of
CARD in order to obtain an improved structure of a software system.

e The second approach is to use only the distance between the entities
from S given by the semi-metric diss. In this direction we have in-
troduced four clustering algorithms PAMRED, HARED, HARS, and
PARS that can be used in the Grouping step of CARD in order to
obtain an improved structure of a software system.

96 ISTVAN GERGELY CZIBULA AND GABRIELA SERBAN

Another classification of the developed algorithms is based on the cluster-
ing method used:

e kRED, PAMRED, and PARS are partitional clustering algorithms;
e HAC, HARED and HARS are hierarchical clustering algorithms.

3. COMPARATIVE ANALYSIS

In order to comparatively analyze the proposed clustering algorithms, we
consider as case study the open source software JHotDraw, version 5.1 ([7]).
It is a Java GUI framework for technical and structured graphics, developed
by Erich Gamma and Thomas Eggenschwiler, as a design exercise for using
design patterns. It consists of 173 classes, 1375 methods and 475 attributes.
The reason for choosing JHotDraw as a case study is that it is well-known as
a good example for the use of design patterns and as a good design.

Our focus is to test the accuracy of our approach on JHotDraw, i.e., how
accurate are the results obtained after applying the algorithms in comparison
with the current design of JHotDraw.

For evaluation, we use two measures:

e Accuracy of classes recovery - ACC. ACC defines the degree to
which the partition obtained by the clustering algorithm is similar to
the initial structure of the analyzed software system.

e Precision of entities discovery - PREC. PREC defines the per-
centage of entities (methods and attributes) from the software system
that were correctly (in comparison with the current design of the sys-
tem) discovered in the partition reported by a clustering algorithm.

The evaluation of the results obtained by applying the above defined algo-
rithms on JHotDraw case study are made using the following characteristics:

e ACC measure that has to be maximized;
e PREC measure that has to maximized;
e the running time of the algorithm that has to minimized.

All these algorithms provide better results than the approaches existing in
the literature in the field of refactoring. Table 1 gives the comparative results.

A graphical representation of the results illustrated in Table 1 is given in
Figure 1.

Based on the results presented in Table 1 and Figure 1, we can conclude
that PARS algorithm provides the best results.

4. CASE STUDY

As shown in Section 3, from the analyzed clustering algorithms for iden-
tifying refactorings, PARS algorithm provides the best results. That is why

A STUDY ON CLUSTERING BASED RESTRUCTURING OF SOFTWARE SYSTEMS 97

Algorithm | ACC | PREC | Running time (min.)
kRED 0.9829 | 0.9966 5
HAC 0.9899 | 0.9945 6
PAMRED | 0.9939 | 0.9994 1.5
HARED | 0.974 | 0.9978 3.5
HARS 0.974 | 0.9978 3.68
PARS 1 1 1.5

TABLE 1. Comparative results.

BACC
HPREC
O Running time

2SS el e P P Pt I Bl 0 G bl R R P T R 0
SchhorovhrhonamroabeDvhnRoNRRRD
P T T S M Tl

kRED HAC PAMRED HARED HARS PARS

FIGURE 1. The comparative results.

in this section we present a real software system as a case study for evaluat-
ing PARS algorithm. It is DICOM (Digital Imaging and Communications in
Medicine) [5] and HL7 (Health Level 7) [9] compliant PACS (Picture Archiving
and Communications System) system, facilitating the medical images manage-
ment, offering quick access to radiological images, and making the diagnosing
process easier.

The analyzed application is a large distributed system, consisting of sev-
eral subsystems in form of stand-alone and web-based applications. We have
applied PARS algorithm on one of the subsystems from this application.

98 ISTVAN GERGELY CZIBULA AND GABRIELA SERBAN

The analyzed subsystem is a stand-alone Java application used by physi-
cians in order to interpret radiological images. The application fetch clinical
images from an image server (using DICOM protocol), display them, and offer
various tools to manage radiological images.

Even if the application is currently used, it also continuously evolves in
order to satisfy change requirements and to provide better user experience
based on feedback. That is why, the developers are often faced with the need
of structural and conceptual changes.

The analyzed application consists of 1015 classes, 8639 methods and
4457 attributes.

After applying PARS algorithm, a total of 90 refactorings have been sug-
gested: 10 Move Attribute refactorings, 78 Move Method refactorings, and 2
Inline Class refactoring.

The obtained results have been analyzed by the developers of the applica-
tion and the following conclusions were made:

e 28.8% from the refactorings identified by PARS were accepted by the
developers as useful in order to improve the system.

e 21.1% from the refactorings were acceptable for the developers, but
they concluded that these refactorings are not necessary in the current
stage of the project.

e 50.1% from the refactorings were strongly rejected by the developers.

Analyzing the obtained results, based on the feedback provided by the
developers, we have concluded the following:

e PARS successfully identified smart GUI anti-patterns (parts of soft-
ware were the presentation layer contains bussiness logic), misplaced
constants (constants used only on a subtree of a class hierarchy, but
defined in some base class). These kind of weaknesses can be dis-
covered only if the developer manually inspects all the classes, or if
a bug (related to the misplaced bussiness logic) arises. That is why
automatic detection by PARS of these kind of weaknesses can prevent
system failure or other kind of bugs and also save a lot of manual work.

e A large number of miss-identified refactorings are due to technical
issues: the use of Java anonymous inner classes, introspection, the use
of dynamic proxies. These kind of technical aspects appear frequently
in projects developed in Java. In order to correctly deal with these
aspects, we have to improve only the Data collection step of our
approach, without modifying the PARS algorithm.

e Another cause of miss-identified refactorings is due to the fact that
the distance used for discriminating entities in the clustering process
take into account only two aspects of a good design: low coupling and

A STUDY ON CLUSTERING BASED RESTRUCTURING OF SOFTWARE SYSTEMS 99

high cohesion. It would be also important to consider other principles
related to an improved design, like: Single Responsibility Principle,
Open-Closed Principle, Interface Segregation Principle, Common Clo-
sure Principle [4], etc.

e Our approach is currently implemented as a stand-alone application:
the user provides the .jar files containing the classes of the analyzed
software system and our application displays the suggested refactor-
ings. The developers have suggested that it would be preferable to
integrate our tool existing IDE (as a plugin), instead of a stand-alone
application.

5. CONCLUSIONS AND FUTURE WORK

We have presented in this paper a comparative analysis of several cluster-
ing algorithms that we have previously developed, algorithms which can be
used in order to recondition the class structure of a software system. As a
conclusion, the advantages of our approach for determining refactorings using
clustering are:

e it can deal with various types of refactorings;

e it can be applied for large software systems;

e it can offer support to software developers for identifying ill-structured
software modules.

Further work can be done in the following directions:

e To study the applicability of other learning techniques in order to
improve software systems design.

e To use other search based approaches in order to determine refactorings
that improve the design of a software system.

e To develop a tool (as a plugin for Eclipse) that is based on CARD.

e To apply our approach in order to transform non object-oriented soft-
ware into object-oriented systems.

REFERENCES

[1] William J. Brown, Raphael C. Malveau, III Hays W. McCormick, and Thomas J. Mow-
bray, Antipatterns: refactoring software, architectures, and projects in crisis, John Wiley
& Sons, Inc., New York, NY, USA, 1998.

[2] IG. Czibula and Gabriela Serban, A Hierarchical Clustering Algorithm for Software
Systems Design Improvement, KEPT 2007: Proccedings of the First International Con-
ference on Knowledge Engineering: Principles and Techniques, 2007, pp. 316-323.

[3] Istvan G. Czibula and Gabriela Serban, Improving Systems Design using a Clustering
Approach, IJCSNS International Journal of Computer Science and Network Security 6
(2006), no. 12, 40-49.

100 ISTVAN GERGELY CZIBULA AND GABRIELA SERBAN

[4] Tom DeMarco, Structured analysis and system specification, Addison-Wesley Longman
Publishing Co., Inc., Prentice Hall, 1979.

[5] Digital Imaging and COmmunications in Medicine. at Web: http://medical.nema.org/.

[6] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1999.

[7] E. Gamma, JHotDraw Project. http://sourceforge.net/projects/jhotdraw.

[8] Jiawei Han, Data mining: Concepts and techniques, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2005.

[9] Health Level 7. at Web: www.hl7.org/.

[10] Chung-Horng Lung, Software Architecture Recovery and Restructuring through Cluster-
ing Techniques, ISAW ’98: Proceedings of the Third International Workshop on Software
Architecture, 1998, pp. 101-104.

[11] Gabriela Serban and Istvan G. Czibula, A New Clustering Approach for Systems De-
signs Improvement, SETP-07: Proceedings of the International Conference on Software
Engineering Theory and Practice, 2007, pp. 47-54.

[12] Istvan G. Czibula and Gabriela Serban, Hierarchical Clustering for Software Systems
Restructuring, INFOCOMP Journal of Computer Science, Brasil (2007), to be published.

[13] Gabriela Serban and Istvan G. Czibula, Restructuring software systems using cluster-
ing, ISCIS 2007: Proceedings of the 22nd International Symposium on Computer and
Information Sciences, 2007, pp. to be published.

[14] Istvan G. Czibula and Gabriela Serban, Software systems design improvement using
hierarchical clustering, SERP 2007: Proceedings of SERP ’07, 2007, pp. 229-235.

[15] Xia Xu, Chung-Horng Lung, Marzia Zaman, and Anand Srinivasan, Program Restruc-
turing through Clustering Techniques, SCAM ’04: Proceedings of the Source Code Anal-
ysis and Manipulation, Fourth IEEE International Workshop, 2004, pp. 75-84.

DEPARTMENT OF COMPUTER SCIENCE, BABES-BOLYAT UNIVERSITY, 1 M. KOGALNICEANU
STREET, 400084 CLUJ-NAPOCA, ROMANIA
E-mail address: istvanc@cs.ubbcluj.ro

DEPARTMENT OF COMPUTER SCIENCE, BABES-BOLYAT UNIVERSITY, 1 M. KOGALNICEANU
STREET, 400084 CLUJ-NAPOCA, ROMANIA
E-mail address: gabis@cs.ubbcluj.ro

