
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LII, Number 2, 2007

INDEXING THE EVOLUTION OF MOVING OBJECTS
WITHIN A 2D SPACE USING THE BRICKR STRUCTURES

ANDREEA SABAU

Abstract. A growing number of applications manage mobile objects.
The storage and the organization within databases of data describing the
evolution of these objects is an open challenge. Data must be managed
in efficient structures with respect to both the storage space consumed
and the data access through these structures. An indexing method that
organizes the evolutions of spatial objects within a 2D space is proposed
in this paper. The Dynamic-BrickR access method uses two structures:
an underlying permanent R*-Tree structure, and an in-memory dynamic
space grid structure, that it used for building the terminal nodes to feed
the R*-Tree. Experiments show significant improvements of the Dynamic-
BrickR method over the R*-Tree index, regarding the dead space and the
overlapping volumes. The Dynamic-BrickR inherits from the R*-Tree the
capability to be used in answering spatial, temporal and spatio-temporal
queries.

1. Introduction

The organization and management of spatio-temporal objects required
lately a lot of attention. The growing interest in this area is justified by
the proliferation of a large range of applications that can benefit of efficient
management methods for spatio-temporal data. Communication and localiza-
tion in mobile objects networks is one such application domain.

The spatio-temporal data represents the evolution of spatial objects in
time. A spatial attribute with discretely or continuously evolving values may
represent the shape and / or the location of an object. For example, land
parcels positions and extents evolve discretely in time; while the cars on a
road are continuously changing their position, but not the shape. The most

Received by the editors: November 1, 2007.
2000 Mathematics Subject Classification. 68P05, 68P20.
1998 CR Categories and Descriptors. H.2.2 [Information Systems]: Database Man-

agement – Physical Design; H.2.4 [Information Systems]: Database Management – Sys-
tems; H.2.8 [Information Systems]: Database Management – Database Applications .

79

80 ANDREEA SABAU

significant challenge in the management of spatio-temporal objects is to ef-
ficiently organize information about the continuous change in time of their
spatial features values

The extended version of the Dynamic-BrickR access method for indexing
3D spatio-temporal data is presented in this paper. The described method is
based on the previous work presented in [9, 10]. Dynamic-BrickR organizes
the continuous evolutions of spatial objects within a 2D spatial domain. These
objects shape is not relevant and they are represented as points (or no extent)
objects. A real-world example of such objects is that of the cars on a network
of roads that are moving with different speeds, in any way.

Related Work. Many researchers have worked on organizing spatio-tem-
poral objects in index structures. These structures may be classified as struc-
tures that index: past data, present and past data or data about present and
future.

Several index structures, such as STR-Tree [7] and SETI [4] organize
past information. The STR-Tree is an R-Tree like structure that attempts
to achieve trajectory preservation for each object by storing its trajectory seg-
ments in the same tree node. SETI divides the spatial domain into a static
partition and the data corresponding to one cell of the partition are organized
into an R-Tree.

There are many spatio-temporal access methods that manage present (and
past) data. The 2-3 TR-Tree [1] is an index structure that contains two R-
Trees: one tree for points that represent present data and another R-Tree for
the trajectories from the past; the search might have to consult one or both
R-Trees. The MR-Tree [13] and the HR+-Tree [11] are overlapping R-Trees,
where a node may have one or more parents. The LUR-Tree [5] indexes only
current positions of objects, so historical queries are not supported.

PR-Tree [3], STAR-Tree [8], and TPR*-Tree [12] belong to a class of spatio-
temporal access methods, which manage present data and data for prediction
of future movement.

The paper is organized as follows. The Dynamic-BrickR access method,
its extended structures and the management of spatio-temporal data are de-
scribed in Section 2. Section 3 presents the comparative results for Dynamic-
BrickR, BrickR and R*-Tree [2] methods in organizing and querying spatio-
temporal data. The paper ends with conclusions and future work.

2. The 2D Dynamic-BrickR Spatio-Temporal Access Method

This section presents the structures and the involved management opera-
tions corresponding to the Dynamic-BrickR access method. These structures

INDEXING THE EVOLUTION OF MOVING OBJECTS WITHIN A 2D SPACE 81

represent the upgrade applied on the 1D Dynamic BrickR [9, 10] access method
in order to index the continuous evolutions of mobile objects within a 2D space.

The Dynamic-BrickR access method uses a temporary structure and a
permanent structure in order to index efficiently the recently received and past
data. The permanent physical structure is designed as an R*-Tree and it is
called DBR-Tree. The temporary structure, called DBR-Grid, is an in-memory
space grid, that it used for building terminal tree nodes to feed the R*-Tree.
The dimensionality of the grid corresponds to the space dimensionality of the
indexed objects. In the particular studied case, the grid is 2D. The grid has a
dynamic evolution, as the strips it is composed of are split or merged to best
adjust to the objects evolution in time. The name of the Dynamic-BrickR
access method originates in the visual aspect the grid gives to the indexed
space, which resembles a brick wall; it also reflects the grid dynamic behavior
and the fact it uses an R*-Tree permanent structure.

As it was mentioned before, the structures of the Dynamic-BrickR indexing
method organizes data corresponding to the spatial evolutions of objects in
time. It is considered that the objects shape is not relevant (it is not changing
in time and it is not significant). Therefore, the objects are modeled as points
within the 2D spatial domain.

The spatial domain is considered to be (relatively) constant in time, with-
out affecting the organization rules and the generality of the indexing method.
If a set of objects moved beyond the initially spatial domain borders, the work-
ing space would be extended in a straightforward fashion. In order to facilitate
the generation and the visualization of data, the spatial domain is considered
to be [0, L] × [0, L]. The temporal domain is considered to be isomorphic
to the set of real numbers. Therefore, the temporal domain is treated as an
auxiliary domain to the spatial one.

Regarding the indexed spatio-temporal data, usually the mobile objects are
moving within the spatial domain with a variable speed. In order to facilitate
the representation of their trajectories, the speed of an object is considered to
be constant during a certain time interval. Therefore, the trajectory on that
time interval is approximated by a linear function of time and it is represented
geometrically as a 3D line segment (also called trajectory segment). The set of
trajectory segments corresponding to a mobile object represents the trajectory
of that object, or its spatial evolution in time.

Theoretically, there is no restriction on the manner the mobile objects are
sending the data to the system. The mobile objects can be equipped with some
GPS devices and can send the positioning information with regularity or when
the value of some parameter of movement (the direction and / or the speed)
is changed. Furthermore, the received information can be a spatio-temporal
point (the new position at a certain time instant) or a spatio-temporal line

82 ANDREEA SABAU

segment (the trajectory segment corresponding to a certain time interval).
However, at physical level, the received information is stored as linear functions
of time (as 3D spatio-temporal line segments).

The Dynamic-BrickR access method contains two sub-structures [9, 10]:

• A temporary structure,
• A persistent structure.

The permanent structure in the Dynamic-BrickR method, called the DBR-
Tree, is essentially an R*-Tree structure used to index spatio-temporal data
(3D trajectory segments) from the remote past. It is assumed to be stored in
secondary memory; therefore the paginated storage of the nodes is facilitated.

The temporary structure, called the DBR-Grid, is a grid structure that
indexes the newest spatio-temporal data received by the system. This struc-
ture is stored in the main memory, having the advantage of a short data access
time and efficient operations.

Regarding the receiving of data, it is natural to consider that data about an
object trajectory arrives in ascending order of the timestamps of the trajectory
segments end points.

As it was described in [9, 10], the temporary structure is designed to
create an extra ”thinking” moment of how to group trajectory segments into
MBRs. The main idea is not to insert a segment into the main R*-Tree
structure as soon as it is received by the system. The most recent segments are
kept in memory and clustered in in-memory tree nodes, which will be entirely
inserted in the tree afterwards. This way, there are almost void chances to get
overlapping areas between the resulting leaf nodes MBRs and this conducts
to smaller overlapping at superior levels.

As in the 1D Dynamic-BrickR structures [9, 10], the DBR-Grid is obtained
by partitioning the 3D spatio-temporal domain using two sets of hyper-planes
parallel with the temporal axis (Ot). One set’s hyper-planes are also parallel
to the Oy axis, and perpendicular on the Ox axis, and the hyper-planes of the
other set are parallel with the Ox axis, and perpendicular on the Oy axis. The
initial number of hyper-planes and their positions are set at the beginning of
the grid’s construction. The partitioning of the spatial domain is accomplished
by using (initially) equidistant hyper-planes on each of the two spatial axes.
The pieces of the DBR-Grid are 3D orthogonal polyedra and, as in the case
of 1D Dynamic-BrickR structures, these elements are called strips.

It is also initially considered that the number of hyper-planes on the Ox
axis (nbx) is equal to the number of divisions on the Oy axis (nby). This
number is noted here nb. Therefore, the initial number of grid strips is nb2. Let
the DBR-Grid obtained in this manner be built by the strips Bij , i, j:=1..nb.
The length of the spatial projection of a strip on the Ox and Oy axis is initially

INDEXING THE EVOLUTION OF MOVING OBJECTS WITHIN A 2D SPACE 83

∆b = lS/nb. The coordinates of the partitioning hyper-planes are given by
the two arrays XD = (xd0, xd1, ..., xdnb), and YD = (yd0, yd1, ..., ydnb),
respectively, where xdk = k ∗ ∆b and ydk = k ∗ ∆b, k:=0..nb. Let nSegm ij
be the number of trajectory segments contained within a grid strip Bij , and
SBij

k the segments included in Bij , i, j:=1..nb, k:=1..nSegm ij. The initial
configuration of the DBR-Grid is considered in Fig. 1.

According to these observations, the partitioning hyper-planes initially
determine on the spatial domain (xOy) a 2D rectangular regular grid (see
the initial partitioning of the spatial domain xOy in Fig. 1). Because of
the grid’s dynamicity, the spatial partitioning may become non-regular by
performing some division and / or merge operations (see the Examples 1 and
2). Furthermore, the numbers of partitioning hyper-planes on the two spatial
axes may differ in time (nbx 6= nby).

As in the 1D case, the trajectory segments are first inserted in the DBR-
Grid. One segment may be clipped according to the grid strips it intersects,
and then the resulted sub-segments are inserted in the corresponding strips
of the DBR-Grid. In other words, if a segment intersects two or more strips,
it is divided into pieces, each piece being totally enclosed within a strip. Fig.
1 shows the result of a fragmentation operation performed on a trajectory
segment, having as result three sub-segments.

The MBR of a 3D strip Bij is given by the points (xMBR
1 , yMBR

1 , tMBR
1)

and (xMBR
2 , yMBR

2 , tMBR
2), where xMBR

1 = xdi−1, xMBR
2 = xdi, yMBR

1 =
ydj−1, yMBR

2 = ydj , tMBR
1 = min{SBij

k .t1| k:=1..nSegm ij}, and tMBR
2 =

max{SBij
k .t2| k:=1..nSegm ij}.

The modification of the Insert segment and Cut MBR algorithms corre-
sponding to the 2D DBR-Grid so that to manage 3D trajectory segments is
straightforward. The major difference between the 2D DBR-Grid and the 3D
DBR-Grid is found at operational level (the management of the partitioning
hyper-planes, the division and merge operations). Furthermore, an object B
of type Strip [10] is characterized by its spatial borders, given by B.xmin,
B.xmax, B.ymin, B.ymax, and an object g of type DBR-Grid is a 2D array
with elements of type Strip. The structure of g is determined by the XD and
YD arrays: nbx is the number of rows of g, nby gives the number of columns
of g, and g[i][j] represents the strip that contains a set of SO segments, so
that SO.x1, SO.x2 ∈ [xdi−1, xdi) and SO.y1, SO.y2 ∈ [ydj−1, ydj), i:=0..nbx,
j:=0..nby.

It can be observed that the partioning determined by the object g on the
spatial domain does not concur with the physical delimitation of the strips.
Therefore, it have to be mentioned that g determines a virtual partitioning
of the spatial domain, and the borders of the strips (the hyper-planes of XD

84 ANDREEA SABAU

and YD of which coordinates are found within the strips member data xmin,
xmax, ymin, ymax) determine the physical partitioning of the spatial domain.

Figure 1. The fragmentation of the trajectory segments
within the strips of the DBR-Grid. The graphical represen-
tation shows the inserted segment, its projection on the xOy
plane, and the spatial projections of the obtained three sub-
segments.

Two aspects have to be mentioned in order to understand the division
algorithm that is performed on a 3D strip:

(1) The division is performed on a single spatial dimension.
(2) The division is physically affecting a single strip.
The second observation is related to the fact that choosing a new partition-

ing hyper-plane h div for a strip B’ virtually affects all the strips intersected
by it, unlike the division of a 2D strip. But it is unlikely that another strip
than B’ needs to be divided in that moment. Therefore, only the strip B’ is
physically affected by the division by h div. If another strip B” needs later
to be divided and h div intersects B”, then the hyper-plan h div is considered
as candidate in performing the division of B”. The algorithm by which the
partitioning hyper-plan is chosen is described next (ChooseDivision).

ChooseDivision(B, D, h div)
// Input:
// B - the strip of the DBR-grid which has to be divided

INDEXING THE EVOLUTION OF MOVING OBJECTS WITHIN A 2D SPACE 85

// Output:
// D - the spatial dimension on which the division will
// be performed
// h div - the partitioning hyper-plane on D dimension

// The ChooseDivision routine determines the dimension D
// on which the division will be performed and the
// position of the partitioning hyper-plane h div

Let R be the projection of B on the spatial domain
Let dx and dy the projections of R on the Ox, and Oy,
respectively
If dx ≤ dy then D := Ox
Else D := Oy
End if
If D = Ox then

If ∃xdi ∈ XD such as B.xmin < xdi < B.xmax then
h div := xd∗i, where xd∗i ∈ XD, B.xmin < xd∗i < B.xmax,

|xd∗i − (B.xmin + B.xmax)/2| =
min{xdi − (B.xmin + B.xmax)/2|xdi ∈ XD}

// If there exists at least one hyper-plan in XD
// that intersects B, then h div is chosen so that
// to be the closest to the median of R on Ox

Else
Choose x division(b, h div)
// The routine is similar to the Choose x division
// algorithm presented in [10]

End if
Else // D = Oy

Choose h div on the Oy axis as it was chosen in the
first case

End if
End ChooseDivision

The following two examples show the updates on the DBR Grid object (g)
during the division and merge operations. The notation B = (g[i][j]| i:=1..nbx,
j:=1..nby) is used in order to specify all the g’s elements that refer the strip
B.

Example 1. Let L = 100, nbx = nby = 4, XD = YD = (0, 25, 50, 75,
100) be the initial configuration data of the DBR-Grid g. The initial virtual
partitioning concure with the physical partitioning (see Fig. 2(a)). Let x div
= 35 be the position of the division hyper-plane used to divide the strip B =
(g[2][2]) (the marked cell).

86 ANDREEA SABAU

Fig. 2(b) shows the configuration of the spatial projections of the strips,
the physical and the virtual partitioning, after the strip has been divided. It
can be noticed that the strips that are intersected by x div are not physically
divided; they preserve the position and the content, but they are referred by
two elements of the virtual grid. For example, the strip B’ = (g[2][1]) (see Fig.
2(a)) is given next by B’ = (g[2][1], g[3][1]). The virtual partitioning lines that
are not part of the physical partitioning are represented by dotted lines.

Later, the coordinate of a new partitioning hyper-plan y div = 60 on Oy
axis is determined in order to divide the strip B = (g[4][3]). After updating
the object g, it can be observed that all the strips referred by elements on the
4th row (with the exception of g[4][3]) are now referred by one more element
(see Fig. 2(c)). For example, the strip B’ = (g[2][3], g[3][3]) from Fig. 2(b) is
now referred as B’ = (g[2][3], g[3][3], g[2][4], g[3][4]). Fig. 2(d) represents the
configurations of the physical and virtual partitions after a division by x div
= 65 have been performed. It can be observed that the shape of the spatial
projections of the grid’s strips does not depend on the position, dimension or
the order in which the divisions are performed; their shape is continuously
rectangular.

Corresponding to the definition of neighbor strips given in [10], two 3D
strips, B1 and B2, are considered to be neighbors if

(B1.xmax = B2.xmin or B1.xmin = B2.xmax) or
(B1.xmax = B2.xmin or B1.ymin = B2.ymax).

Also similar to the measure of density defined in [10], the density of seg-
ments within an object R (strip or MBR of a tree node) is given by

C(R) = nSegm ∗ dx ∗ dy/dt,

where M denotes the maximum capacity of a tree node.
The merging technique is related to the manner in which the virtual par-

titioning was managed during the division operations. Another condition that
must be fulfilled by two neighbor strips, B1 and B2, is that their spatial pro-
jections on the dimension complementary to the dimension on which the strips
are neighbors to concur (for example, if the dimension on which the two strips
are neighbors is Oy, then B1.xmin = B2.xmin and B1.xmax = B2.xmax).
Then, among all the candidate neighbor strips, it is selected the pair of strips
which minimizes the sum of their densities of segments. For example, it is con-
sidered the configuration represented in Fig. 2(d): let B1 = (g[5][4]) and B2

= (g[6][3], g[6][4]) be two neighbor strips; these two strips cannot be merged
because their spatial projections on the Oy axis does not concur ([60, 75) 6=
[50, 75)).

INDEXING THE EVOLUTION OF MOVING OBJECTS WITHIN A 2D SPACE 87

Figure 2. The updates performed on the DBR-Grid during
the division operations presented in Example 1.

The manner in which the merge of two neighbor strips is performed is
presented by Example 2.

Example 2. It is considered the configuration represented in Fig. 2(d).
The first merge operation is performed on the strips B1 = (g[1][1]) and B2 =
(g[1][2]). Because the hyper-plan x div = 25 physically delimits other strips,

88 ANDREEA SABAU

the reunion affects only the B1 and B2 strips, and does not affect the vir-
tual partitioning. A single physical strip B = (g[1][1], g[1][2]) results after
performing the merge operation (see Fig. 3(a)).

Next, the reunion of strips B1 = (g[1][3], g[1][4]) and B2 = (g[2][3], g[3][3],
g[2][4], g[3][4]) is considered. The result of the reunion is given by the strip
B = (g[1][3], g[2][3], g[3][3], g[1][4], g[2][4], g[3][4]) (see Fig. 3(b)). Fig. 3(c)
depicts the spatial configuration obtained by merging the strips B1 = (g[2][2])
and B2 = (g[3][2]). Because the hyper-plane x div = 35 does no delimit two
physical strips, the last merge operation also affects the structure of the virtual
grid by eliminating this hyper-plane.

3. Experimental Results

This section presents the comparative results obtained for three access
methods: R*-Tree method, BrickR method - similar to Dynamic-BrickR, does
not perform strips merging and the Dynamic-BrickR method. These three
methods are evaluated in respect to the quality of data organization and the
efficiency of answering queries using the corresponding built indexes.

Tests have been run on three synthetic data sets of 3D trajectory seg-
ments, which were constructed using sets of points associated to the mobile
objects. Each test data set numbers 10000 trajectory segments, recorded for
100 mobile objects. The coordinates (x, y, t) of the data points belong to a
well-determined spatio-temporal working interval: the temporal domain was
[1, 50000], and the spatial domain was [1..1000] × [1..1000]. The three test
data sets were constructed from: points randomly generated (with uniform
distribution), points following a Gaussian distribution and points following a
Poisson distribution. For each of the three methods, the capacity of a tree
node was set to 25 - considering the size of a disk page equal to 512B. The
minimum occupancy of a tree node was set to 40

Regarding the data organization, the measures evaluated on the permanent
structures built by the three compared access methods are: the degree of tree
nodes occupation, the sum of nodes MBRs areas, the sum of nodes MBRs
volumes and the total value of the overlapping volumes between the nodes on
the same tree level.

Even if the number of indexed segments by the Dynamic-BrickR perma-
nent structure is greater than the initial number of segments, due to the clip-
ping method, the tests show a better node occupation than in the case of
R*-Tree: on the average, the node occupancy in the R*-Tree is 54.15% and in
the BrickR and Dynamic-BrickR is 95.27% and 92.76% respectively.

Fig. 4(a) and Fig. 4(b) comparatively present for each sort of data sets
the sums of the MBRs area and the sums of the MBRs volumes, and Fig.

INDEXING THE EVOLUTION OF MOVING OBJECTS WITHIN A 2D SPACE 89

Figure 3. The updates performed on the DBR-Grid during
the merge operations presented in Example 2.

5 shows the obtained results regarding the overlapping volumes between the
nodes on the same tree level. It can be noticed that with only one exception
in the case of data sets with Gaussian distribution in evaluating the MBRs
areas, the obtained results were better (smaller) for the BrickR methods than
for the R*-Tree method.

90 ANDREEA SABAU

Figure 4. (a) The sum of MBRs areas and (b) the sum of
MBRs volumes, for the R* Tree, BrickR and Dynamic BrickR
methods

Figure 5. Overlapping volumes between the MBRs of nodes
on the same tree levels, for all tree nodes, for the R* Tree,
BrickR and Dynamic BrickR methods

The queries performed on spatio-temporal data may be classified as: spa-
tial queries, temporal queries and spatio-temporal queries. The types of
queries for which tests have been performed consist of combinations of spatial
and / or temporal, point and / or window queries, denoted by:

• S-P T-P query: spatial-point temporal-point query;
• S-W query: spatial-window query;
• T-W query: temporal-window query;
• S-W T-W query: spatial-window temporal-window query;
• S-W T-P query: spatial-window temporal-point query;

INDEXING THE EVOLUTION OF MOVING OBJECTS WITHIN A 2D SPACE 91

• S-P T-W query spatial-point temporal-window query.
It can be observed that the S-P T-P, S-W T-P, and S-P T-W types of

queries are particular cases of the S-W T-W queries.
The data within query sets follow a uniform distribution on the spatio-

temporal working space, and cover the whole working space. On the other
hand, two sorts of query sets have been used in the case of window or point-
window queries, in accordance with the maximum length of generated inter-
vals: the spatial and temporal length of the query windows represent maximum
25

In all experiments, the average number of tree nodes visited for answer-
ing the query was measured. BrickR and Dynamic-BrickR methods obtained
better results on uniformly distributed data sets, except in the case of T-W
queries. The execution of the T-W queries showed a better performance for
the R*-Tree. In the other cases the obtained results for the three compared
access methods were relatively closed.

4. Conclusions and Future Work

The Dynamic-BrickR access method that indexes 3D spatio-temporal data
preserves the advantages of the previous version of it:

• The trajectory segments are grouped within the grid structure and sent
as a node (completely built) in the tree structure. Thus, the number
of performed I/O operations is reduced.
• The chances to obtain overlapping volumes between the MBRs of

DBR-Tree’s terminal nodes are minimized.;
• The inserted terminal nodes are almost fully occupied.

The proposed future work includes the development of a BrickR-like struc-
ture for organizing the continuous evolutions of objects with shape. On the
other side, the re-organization of the BrickR permanent structure is proposed
as future work, so that to limit the number of tree levels by temporal frag-
menting of the node set. This way, the enlargement of the indexed data set
does not affect in a major way the performance of the structure.

References

[1] M. Abdelguerfi, J. Givaudan, K. Shaw, R. Ladner, The 2-3 TR-tree, A Trajectory-
Oriented Index Structure for Fully Evolving Valid-time Spatio-temporal Datasets, In
Proc. of the ACM Workshop on Adv. in Geographic Information Systems, ACM
GIS, 29-34, 2002.

[2] N. Beckmann, H. P. Kriegel, R. Schneider, B. Seeger, The R*-tree: An Efficient
and Robust Access Method for Points and Rectangles, In Proc. of the Intl. Conf. on
Management of Data, SIGMOD, 322-331, 1990.

92 ANDREEA SABAU

[3] M. Cai, P. Revesz, Parametric R-Tree: An Index Structure for Moving Objects, In
Proc. of the Intl. Conf. on Management of Data, COMAD, 57-64, 2000.

[4] V. P. Chakka, A. Everspaugh, J. M. Patel, Indexing Large Trajectory Data with
SETI, In Proc. of the Conf. on Innovative Data Systems Research, CIDR, 164-175,
2003.

[5] D. Kwon, Sj. Lee, S. Lee, Indexing the Current Positions of Moving Objects Using
the Lazy Update R-tree, In Mobile Data Management, MDM, 113-120, 2002.

[6] M. A. Nascimento, J. R. O. Silva, Y. Theodoridis, Evaluation of Access Structures
for Discretely Moving Points, In Proc. of the Intl. Workshop on Spatio-Temporal
Database Management, STDBM, 171-188, 1999.

[7] D. Pfoser, C. S. Jensen, Y. Theodoridis, Novel Approaches in Query Processing for
Moving Object Trajectories, In Proc. of the Intl. Conf. on Very Large Data Bases,
VLDB, 395-406, 2000.

[8] C. M. Procopiuc, P. K. Agarwal, S. Har-Peled, STAR-Tree: An Efficient Self-
Adjusting Index for Moving Objects, In Proc. of the Workshop on Alg. Eng. and
Experimentation, ALENEX, 178-193, 2002.

[9] A. Sabau, Indexing Mobile Objects Using BrickR Structures, In Studia Universitatis
Babes-Bolyai, Informatica, Vol. LI(2), 71-80, 2006.

[10] A. Sabau, A. Campan, BrickR: The Dynamic-BrickR Access Method for Mobile
Objects, Proc. of the 22nd International Symposium on Computer and Information
Sciences, Turkey, 2007.

[11] Y. Tao, D. Papadias, Efficient Historical R-trees, In Proc. of the Intl. Conf. On
Scientific and Statistical Database Management, SSDBM, 223-232, 2001.

[12] Y. Tao, D. Papadias, J. Sun, The TPR*-Tree: An Optimized Spatio-temporal Access
Method for Predictive Queries, In Proc. of the Intl. Conf. on Very Large Data Bases,
VLDB, 790-801, 2003.

[13] X. Xu, J. Han, W. Lu, RT-Tree: An Improved R-Tree Indexing Structure for Tem-
poral Spatial Databases, In Proc. of the Intl. Symp. on Spatial Data Handling, SDH,
1040-1049, 1990.

Faculty of Mathematics and Computer Science, Babes-Bolyai University,
Cluj-Napoca, Romania

E-mail address: deiush@cs.ubbcluj.ro

