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GENERALIZED CYLINDERS SURFACES

L. ŢÂMBULEA AND I. GÂNSCA

Abstract. A generalized cylinder surface is generated by moving a 2D
continuous curve along a 3D regular spine curve; the generating curve could
be scaled and rotated around the spine curve. The shape of generalized
cylinder surface induced by the scale functions and the angular velocity of
rotation as well as some integral properties are discussed.
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1. Motivation

Many industrial and artistic objects can be modelled with the aid of gen-
eralized cylinder surfaces. Theoretical and practical investigations in this area
have been done by Lee and Requicha [7], Shani and Ballard [9], Bronsvoort
and Warts [1], van der Helm, Ebell and Bronsvoort [6], Maekawa, Patrikalakis,
Sakkalis and Yu [8], Gansca, Bronsvoort, Coman and Ţâmbulea [5] and oth-
ers. The paper has the following structure. In Section 2 we recall the vector
equation of a generalized cylinder surface. The shape of a generalized cylinder
surface induced by the shapes of the scale functions is revealed in Section 3.
Section 4 contains generalized cylinder surfaces generated by a scaled curve
which makes rotations around the spine curve. Some integral properties of
these twisted generalized cylinder surfaces and twisted generalized cylinders
(objects) are given in Section 5.

2. Vector equation of a generalized cylinder surface

A generalized cylinder surface is generated by a continuous 2D curve which
moves along a 3D regular spine (guide) curve, the plane of curve being per-
pendicular to the spine curve. The generating curve is referred to the local
coordinate system X, Y , situated on the unit principal normal and binomial,
respectively, vectors of the spine curve, see Fig.1.

Let us consider that the vector position of an arbitrary point of the spine
curve is C(u), u ∈ [a, b] and the vector position of an arbitrary point of
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Figure 1. A generalized cylinder surface with an intermediary
position of the generating curve γ(v).

the generating curve, with respect to the X, Y coordinate system, is γ(v) =
(ϕ(v), ψ(v))T , v ∈ [c, d]. If the generating curve γ(v) is scaled into the di-
rections of n(u) and b(u) with the aid of the positive and continuous scalar
functions s1(u) and s2(u), respectively, u ∈ [a, b], then, from Fig.1, one deduces
the following vector equation of the generalized cylinder surface

Γ(u, v) = C(u) + s1(u)ϕ(v)n(u) + s2(u)ψ(v)b(u), (u, v) ∈ D,(1)

where D = [a, b]× [c, d].
The unit vectors t(u),n(u) and b(u) form the Frenet trihedrom and are

given by the formulas

t(u) =
C′(u)
|C′(u)| , b(u) =

C′(u)×C′′(u)
|C′(u)×C′′(u)| , and n(u) = b(u)× t(u).(2)

Remark 1. From (2) results that the vector function C(u) must be of
the second order continuity class.

In what follows we will firstly focus on the Γ(u, v) surface shape control
with the aid of scale functions s1(u) and s2(u). Next we will deduce the vector
equation of the generalized cylinder surface resulted by rotation of the scaled
generating curve γs(v; u) = (s1(u)ϕ(v), s2(u)ψ(v))T around the spine curve
C(u), with a variable angular velocity.
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3. Shape of Γ(u, v) induced by the shapes of s1(u) and s2(u)

Information about the shape of Γ(u, v) one obtains analysing its coordinate
lines Γ(u = const, v), v ∈ [c, d] and Γ(u, v = const), u ∈ [a, b], respectively.
From the vector equation (1) we observe that the coordinate line Γ(u, v =
const), u ∈ [a, b] is, in fact, the scalled generating curve γs(v; u), u = const
relative to the xOyz coordinate system.

Important information about the shape of coordinate line Γ(u, v =const),
u ∈ [a, b] results from its tangent vector Γu(u, v). From (1), taking into account
the Frenet-Serret formulas,

t′(u) = K(u)|C′(u)|n(u),
n′(u) = |C′(u)|[−K(u)t(u) + T (u)b(u)],
b′(u) = −T (u)|C′(u)|n(u),

one obtains

Γu(u, v) = |C′(u)| [1−K(u)s1(u)ϕ(v)] t(u)+
+

[
s
′
1(u)ϕ(v)− T (u)s2(u)|C′(u)|ψ(v)

]
n(u)+

+
[
s
′
2(u)ψ(v) + T (u)s1(u)|C′(u)|ϕ(v)

]
b(u),

(3)

where K(u) > 0 and T (u) are the curvature and torsion, respectively, of the
spine curve C(u), and are given by the formulas

K(u) =
|C′(u)×C′′(u)|

|C′(u)|3 and T (u) =
(C′(u)×C′′(u))C′′′(u)

|C′(u)×C′′(u)|2 .

Next we recall
Definition. An interior point of a curve g(t), t ∈ I, I ⊂ <, say g(t0), is

called a cusp of g(t) if

lim
t→t−0

g′(t) = − lim
t→t+0

g′(t).(4)

Remark 2. In the special case when g(t) = (t, f(t))T , t ∈ I, the interior
point g(t0) is a cusp of g(t) if and only if

lim
t→t−0

f(t) = − lim
t→t+0

f(t) = ∞, (or −∞).(5)

With other words, the interior point t0 ∈ I is a cusp of the scalar function
f(t), if and only if (5) holds.

Regarding to an arbitrary coordinate line Γ(u, v0), v0 ∈ [c, d] we will prove
the following
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Proposition 1. If s1(u) and s2(u) have cusps for u = u0 and

lim
u→u0

=
s
′
1(u)

s
′
2(u)

= m,(6)

then the coordinate line Γ(u, v0) does have cusp for u = u0 in the direction of
the vector

ϕ(v0)n(u0) + mψ(v0)b(u0),(7)

provided that |γ(v0)| 6= 0.
Proof. Let us consider a vicinity of u0, say V0, such that s

′
1(u) 6= 0, if

u ∈ V0. Similar reasoning one does if s
′
2(u) 6= 0, u ∈ V0. From (3), if u ∈ V0,

we can write

Γu(u, v0) = s
′
1(u)

{
ϕ(v0)n(u) + s

′
2(u)

s
′
1(u)

ψ(v0)b(u)+

+ |C′ (u)|
s
′
1(u)

[(1−K(u)s1(u)ψ(v0)) t(u)− T (u)s2(u)ψ(v0)n(u)+

+ T (u)s1(u)ϕ(v0)b(u)]} .

If the scalar functions s1 and s2 do have cusps in u0, then, taking into
account Remark 2, (5) and (6) results

lim
u→u−0

Γu(u, v0) = − lim
u→u+

0

Γu(u, v0),

and the direction of Γu(u, v0), when u → u0, approaches to the direction of
vector given at (7).

Remark 3. If ϕ(v0) = 0 and ψ(v0) 6= 0, then from (7) results that the cusp
of coordinate line Γ(u, v0), in u = u0, is in the direction of b(u0). Analogously,
if ϕ(v0) 6= 0 and ψ(v0) = 0, then the cusp of Γ(u, v0), in u = u0, is in the
direction of n(u0).

Figures 2 (a), (b) and Figure 3 illustrate this theoretical part. The gener-
alized cylinder surface from Figure 3 has the spine curve

C(u, a∗) = (u, a∗u2, 0)T , u ∈ [−5, 5], a∗ = 0.05,

and the generating curve with

ϕ(v) = cos(v), ψ(v) = sin(v),

s1(u) = s((u + 5)/10, 0.1, 1, 0.1, 2, 0.5, 20, 3,
π

2
),

s2(u) = s((u + 5)/10, 0.4, 1, 0.2, 0.1, 2,−0.3, 10, 1.4,
π

2
), u ∈ [−5, 5],
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Figure 2. Cusps of s1(u) and s2(u).

where s(t, u0, a, b, c, d, e, p, q, r) =




a, t ∈ [0, u0 − b],
a + d− d

b

√
b2 − (t− u0 + b)2, t ∈ (u0 − b, u0],

a + d− d
c

√
c2 − (t− u0 − c)2, t ∈ (u0, u0 + c],

a + e · cos(p(t− u0 − c)q + r), t ∈ (u0 + c, 1].

Figures 2 (a) and (b) present the cusps of s1(u) and s2(u) respectively,
which determine the cusps to the coordinate lines Γ(u, v = const), shown in
Figure 3.

4. Rotation of the scaled generating curve

In what follows we consider that the scaled generating curve

γs(v; u) = (s1(u)ϕ(v), s2(u)ψ(v))T , v ∈ [c, d],

makes rotations around the spine curve C(u), with angular velocity ω =
ω(u), u ∈ [a, b], while it moves along C(u).

The angle of rotation between the initial and an intermediary position of
γs(v;u), if ω(u) ≥ 0 (or ω(u) ≤ 0) is

α(u) =
∫ u

a
ω(t)dt.(8)
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Figure 3. Cusps of coordinate lines Γ(u, v = const).

The twisted generalized cylinder surface, in this case, is represented by the
following vector equation

Γ1(u, v) = C(u)+
+ [s1(u)ϕ(v)cos(α(u) + α0) + s2(u)ψ(v)sin(α(u) + α0)]n(u)+
+ [−s1(u)ϕ(v)sin(α(u) + α0) + s2(u)ψ(v)cos(α(u) + α0)]b(u),

(9)

(u, v) ∈ D; α0 is the angle of γs(v, u)-rotation around C(u), before the starting
generation of Γ1(u, v).

The number of rotations, if ω(u) ≥ 0 (or ω ≤ 0), when u ∈ [0, u∗] is

n∗ =
|α(u∗)|

2π
,(10)

where α(u∗) is given by the formula (8).
For example, if the angular velocity ω = k|u − u0|β, u ∈ [0, 1], where the

parameter u0 ∈ [0, 1] and α, β are real and positive numbers, using formula
(10), one obtains

α(u) =





k
β+1

[
uβ+1

0 − (u0 − u)β+1
]
, 0 ≤ u ≤ u0,

k
β+1

[
uβ+1

0 + (u− u0)
β+1

]
, u0 ≤ u ≤ 1.

(11)

Denoting by ν the rotations number of curve γs(v; u) around the spine
curve C(u), when u ∈ [0, 1] then, using formulas (10) and (11), results

ν =
k

2(β + 1)π

[
uβ+1

0 + (1− u0)
β+1

]
.
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Therefore, if one wants ν rotations then, the angular velocity must be

ω(u) =
2πν(β + 1)

uβ+1
0 + (1− u0)

β+1
|u− u0|β, u ∈ [0, 1].(12)

Corresponding to this angular velocity, the angle of rotation is

α(u) =





2πν

uβ+1
0 +(1−u0)β+1

[
uβ+1

0 − (u0 − u)β+1
]
, 0 ≤ u ≤ u0,

2πν

uβ+1
0 +(1−u0)β+1

[
uβ+1

0 + (u− u0)
β+1

]
, u0 ≤ u ≤ 1.

(13)

In Figs. 4 and 5 are presented two particular twisted cylinder surfaces
Γ1(u, v) of equation (9), for which

C(u) =
6∑

i=0

biB
6
i (u), u ∈ [0, 1],(14)

where B6
i (u) =

(
6
i

)
(1 − u)6−iui, b0 = (3, 0, 9), b1 = (8, 1, 5), b2 = (11, 9, 2),

b3 = (13, 25, 0), b4 = (7, 29, 2), b5 = (3, 26, 6), b6 = (0, 23, 11) and the angle
of rotation is of the form (13). Fig.4 corresponds to

ϕ(v) = cos(v), ψ(v) = sin(v), v ∈ [0, 2π],
s1(u) = 1 + 0.5sin(12u), s2(u) = 1/s1(u), u ∈ [0, 1],
ν = 1.5, β = 0.01, u0 = 0.1

(15)

and the defining elements of Fig.5 are

ϕ(v) = 4cos3(v), ψ(v) = 4sin3(v), v ∈ [0, 2π],
s1(u) = s2(u) = 1, u ∈ [0, 1],
ν = 0.5, β = 0.2, u0 = 0.3.

(16)

5. Some integral properties

Firstly we recall that a generalized cylinder (solid) is the body bounded
by a generalized cylinder surface and two planes perpendicular to the spline
curve in its initial and final points. Next we will give some formulas regarding
twisted generalized cylinder surfaces and twisted generalized cylinder, without
self-intersections.

Throughout this section we will make use of the
Remark 4. Rotations and other maps, characterized by orthonormal

matrices, leave lengths, areas and angles unchanged (Farin, 1990).
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Figure 4. Twisted generalized cylinder surface Γ1(u, v) cor-
responding to (14) and (15).

Figure 5. Twisted generalized cylinder surface Γ1(u, v) cor-
responding to (14) and (16).

5.1. Gravity center line and area of Γ1(u, v). Gravity center line of Γ1(u, v)
is evidently the locus of the gravity centers of the generating curve

γr(v; u) = (x(v; u), y(v;u))T ,
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where
x(v;u) = s1(u)ϕ(v)cos(α(u) + α0) + s2(u)ψ(v)sin(α(u) + α0),
y(v; u) = −s1(u)ϕ(v)sin(α(u) + α0) + s2(u)ψ(v)cos(α(u) + α0), v ∈ [c, d].

Let G (Xg(u), Yg(u)) be the gravity center of the curve

γs(v;u) = (s1(u)ϕ(v), s2(u)ψ(v))T .

The coordinates Xg(u) and Yg(u) are given in our paper [5], by formulas
(13) and (17). Denoting by Gr

(
Xr

g (u), Y r
g (u)

)
the gravity centre of the curve

γr(v; u), in virtue of the Remark 4 we have,

Xr
g (u) = Xg(u)cos (α(u) + α0) + Ygsin (α(u) + α0) ,

Y r
g (u) = −Xg(u)sin (α(u) + α0) + Ygcos (α(u) + α0) ,

(17)

Locating Gr with respect to the xOyz coordinate system we have

Gr(u) = C(u) + Xr
g (u)n(u) + Y r

g (u)b(u); u ∈ [a, b].(18)

If C(u) = (x(u), y(u), z(u))T , n(u) = (a1(u), a2(u), a3(u)) and b(u) =
(b1(u), b2(u), b3(u)), then, from (18) results

Gr(u) =




xr
g(u)

yr
g(u)

zr
g(u)


 =




x(u) + Xr
g (u)a1(u) + Y r

g (u)a2(u)
y(u) + Xr

g (u)b1(u) + Y r
g (u)b2(u)

z(u) + Xr
g (u)c1(u) + Y r

g (u)c2(u)


 ;(19)

where u ∈ [a, b], Xr
g (u) and Y r

g (u) being given by (17).
Denoting by CGr the locus of Gr(u), when u ∈ [a, b] results
Proposition 2. The gravity center line CGr of the surface Γ1(u, v) has

the parametric equations (19).
If S1 is the area of Γ1(u, v), then, in virtue of the Remark 4 and formula

(23) from our paper (2002) results

S1 =
∫

CGr

L(u)ds =
∫ b

a

√(
xr

g(u)
)′2 +

(
yr

g(u)
)′2 +

(
zr
g(u)

)′2
du.(20)

Next we denote by V1 the twisted generalized cylinder bounded by Γ1(u, v)
and the perpendicular planes to the spine curve in its initial and final points.

5.2. Gravity center line and volume of V1. In our paper [5] we have
established (formulas (23) and (24)) that if G0

(
X0

G, Y 0
G

)
is the gravity cen-

tre of the domain bounded by the closed curve γ(v) = (ϕ(v), ψ(v))T , v ∈
[c, d],γ(c) = γ(d), then the gravity centre of the domain bounded by the
curve γs(v; u) = (s1(u)ϕ(v), s2(u)ψ(v))T , v ∈ [c, d] is G∗ (X∗

G, Y ∗
G), where

X∗
g (u) = s1(u)X0

G,
Y ∗

g (u) = s2(u)Y 0
G.

(21)
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Now, if γs(v; u) makes rotations around the spine curve, with the angular
velocity ω(u), then its gravity centre becomes G∗

r (X∗
r , Y ∗

r ), where

X∗
r (u) = s1(u)X0

Gcos (α(u) + α0) + s2(u)Y 0
Gsin (α(u) + α0) ,

Y ∗
r (u) = −s1(u)X0

Gsin (α(u) + α0) + s2(u)Y 0
Gcos (α(u) + α0) ,

(22)

where α(u) is given by the formula (8).
Denoting by CG∗

r the locus of G∗
r (X∗

r (u), Y ∗
r (u)) when u ∈ [a, b] and pro-

ceedings as before, we can state
Proposition 3. The gravity center line CGr of the generalized cylinder

V1 has the following parametric equations

G∗
r(u) =

(
x∗r(u)
y∗r (u)
z∗r (u)

)
=

(
x(u) + X∗

r (u)a1(u) + Y ∗
r (u)a2(u)

y(u) + X∗
r (u)b1(u) + Y ∗

r (u)b2(u)
z(u) + Xr(∗u)c1(u) + Y ∗

r (u)c2(u)

)
;(23)

where u ∈ [a, b].
With regard to the volume of V1, similary to the formula (26) from our

paper [5], we have

V1 =
∫
CG∗r

A(u)du =

= A0

∫ b
a s1(u)s2(u)

√
(x∗r(u))

′2 + (y∗r (u))
′2 + (z∗r (u))

′2du.
(24)
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