
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LII, Number 2, 2007

COMDEVALCO — A FRAMEWORK FOR SOFTWARE
COMPONENT DEFINITION, VALIDATION, AND

COMPOSITION

BAZIL PÂRV, SIMONA MOTOGNA, IOAN LAZĂR, ISTVAN CZIBULA,

AND LUCIAN LAZĂR

Abstract. This paper introduces ComDeValCo - a framework for Soft-
ware Component Definition, Validation, and Composition. This is the
first paper in a series describing current and further developments of this
framework, which includes a modeling language, a component repository
and a set of tools. The object-oriented modeling language contains fine-
grained constructions, aimed to give a precise description of software com-
ponents. Component repository is storing valid components, ready to be
composed in order to build more complex components or systems. The
toolset contains tools dedicated to component definition, validation, and
composition, as well as the management of component repository.

1. INTRODUCTION

Software systems become more and more complex. In most situations,
where the complexity of the problem to be solved is an important issue, the
decomposition is used - the initial problem is splitted into small sub-problems,
then each sub-problem is solved independently (or their solutions are iden-
tified), and finally the target system is built by composing the solutions of
sub-problems. The evolution of software systems development include the
use of several paradigms: procedural, modular, object-based and oriented,
and component-based; most authors consider component-based development
as the paradigm of the third millenium. The drivers of this evolution were at
least the following:

• the increased complexity of the problems to be solved (and conse-
quently of the systems to be built);

Received by the editors: November 10, 2007.
2000 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. D.2.4 [SOFTWARE ENGINEER-

ING]: Software/Program Verification – Formal methods, Model checking, Validation;
D.2.13 [SOFTWARE ENGINEERING]: Reusable Software – Reuse models; I.6.5
[SIMULATION AND MODELING]: Model Development – Modeling methodologies .

59



60 PÂRV, MOTOGNA, LAZĂR, CZIBULA, AND LAZĂR

• the need for performance (w.r.t. time, money, and throughput): pro-
ducing new state-of-the-art systems in short time, and with less money.

One of the drivers of this evolution was reuse. Early forms of software
reuse are collectively known as code reuse. Nowadays, software reuse covers
also design reuse. Successful design fragments are collected into catalog form
and collectively known as design patterns; they represent not complete de-
signs, but partial solutions, ready to be reused into new designs or contexts.
Also, class libraries evolved into frameworks, which represent complete system
architectures. They are an incarnation of inversion of control design princi-
ple, being a set of cooperating classes that make up a reusable design from a
specific application domain.

The paper is organized as follows: after this introductory section, the sec-
ond one is discussing component-based development process, and the current
status of research and industry efforts in the field. Third section presents
the proposed solution, ComDeValCo framework, detailing its components:
modeling language, component repository and the toolset. The last section
contains some conclusions and plans further efforts.

2. THE PROBLEM

2.1. The problem: component-based software development. The pro-
cess of component-based software development (or CBD for short) has two sub-
processes more or less independent: component development process and sys-
tem development process. Naturally, the requirements on components are de-
rived from system requirements; the absence of a relationship, such as causal,
may produce severe difficulties in both sub-processes mentioned above.

The system construction by assembling software components [CL02] has
several steps: component specification, component evaluation, component
testing, and component integration. The system development sub-process
focuses on identifying reusable entities and selecting the components fulfilling
the requirements, while in the component development sub-process the em-
phasis is on component reuse: from the beginning, components are designed as
reusable entities. Component’s degree of reuse depends on its generality, while
the easiness in identification, understanding, and use is affected by the compo-
nent specification. The sole communication channel with the environment is
the component’s interface(s). In other words, the client components of a com-
ponent can only rely on the contracts specified in the interfaces implemented
by the component. Thus, it is obvious that component development must
be interface-driven. One of major CBD challenges is to design appropriate
interfaces.

In our opinion, the main CBD challenge is to provide a general, flexible
and extensible model, for both components and software systems. This model



COMDEVALCO 61

should be language-independent, as well as programming-paradigm indepen-
dent, allowing the reuse at design level.

2.2. CBD design process models. The design process of a component-
based system [HW00] follows the same steps as in the classical methods: the
design of architecture, which depicts the structure of the system (which are
its parts) and the design of behavior (how these parts interact in order to
fulfill the requirements). The structural description establishes component
interconnections, while behavioral description states the ways in which each
component uses the services provided by interconnected components in order
to fulfill its tasks.

The main idea of CBD is to build the target system from existing com-
ponents; this has several consequences on the target system’s life-cycle. First,
the system development sub-process [HW00] is separated from the component
development sub-process. Second, a new sub-process arises: component iden-
tification and evaluation. Third, the activities in both sub-processes differ
from the traditional methods: the focus is on component identification and
verification (for system development), and on component reuse (in the case of
component development).

The paper [CL02] describes a software systems development model which
can be used in component-based development. The classical waterfall life-cycle
model was upgraded such that it contains component-centric activities: re-
quirements analysis and design - specific to the waterfall model - are combined
with component identification and selection - specific to the component-based
development. The design stage includes architectural design and activities
related to component identification, selection, and adaptation.

Another viewpoint, given in [WR02], considers the following steps in build-
ing a software system from components: a) connecting the components such
that they match; b) understanding the interconnections between components,
and c) examining the behavior of the whole target system with respect to the
requirements.

2.3. Component and system models. There are many ways to deal with
component-based software development. The simplest one is to add to the
contract (interface) of the component all requirements w.r.t. its use (the mean-
ingful interconnections to other components). Unfortunately, this supplement
to the component specification is a time and effort-consuming activity. For
every newly-created component, one must identify all compatible components,
and after that the contracts of these components must be updated in order to
include this new component.

An alternative solution, given in [WR02], is to think the behavior of the
target system as a separate activity, which is performed without accessing



62 PÂRV, MOTOGNA, LAZĂR, CZIBULA, AND LAZĂR

the target system under construction. Unfortunately, this activity is very
complex, but there are models which can help. These models do not reproduce
the behavior of the whole system; they will cover only particular aspects of
the system which are of interest at a specific time. This approach neglects
insignificant details, thus reducing the complexity of the resulting model, total
effort and time for building the model.

Building and testing a real target system is more difficult and takes a
greater volume of resources than the corresponding model evaluation. This
is because the models do not address complexity of the system and the sub-
tleties of its environment. Other potential benefit of using models is their
controllability, i.e. their evaluation before the target system is designed. In
this case, the models are analyzed, simulated, and evaluated using software
tools. The system developer builds a model which is taken by the evalua-
tion tool. The comparison of the model behavior with respect to the system
requirements is made by using either the modeling language or some other
specialized languages.

In order to be evaluated, the models need to be precise, complete, and
consistent. Generally speaking, if the degree of model (i.e. modeling language)
formality is low, the model is a good candidate for inconsistencies, because
some modeling constructs do not have a unique interpretation. When the
model is used to assist the process of designing interactions between different
components / parts of a system, or to assess the correctness of the system,
preciseness, completeness and consistency are a must.

The success of using models (formal or not) is influenced in part by the
availability and the degree of acceptance of modeling tools and techniques
developed by the software development community. Those who build models
need to perceive the usefulness of the models [HW99], need to find a tradeoff
between model complexity and its ease of use. It is convenient to build simple
models, without great investments in time and intellectual effort. More im-
portant, the resulting models need to be accessible, easy to understand and
analyze, and to have a reasonable degree of formality.

It is recognized that modeling is not used today in the software devel-
opment process at its full strength. Usually, models are only simple design
notes, thrown away after the coding is completed. However, model-based ap-
proach (or model-driven approach in software development, MDA) gains more
adepts. In MDA, the model of the system is the center of software develop-
ment process. At least four modeling notations are currently used: finite state
machines ([EG03], [LL00], [WR00]), statecharts ([GM95]), Petri nets ([AW],
[PJ02]) and role-activity diagrams ([HW00], [HHW01], [HWC04], [WR02]).

An important direction concerning the use of models in the CBD process
is represented by the Object Management Group consortium (OMG) efforts,



COMDEVALCO 63

known collectively as executable UML. For example, [OMG05a] describes the
semantics of some simple UML constructions, intended to be used in model
validation and simulation. Model-level testing and debugging is covered in
more detail by [OMG05b], while [OMG05c] contains specifications belonging
to different application domains. Also, [OMG], which refers to current OMG
technology adoption processes, contains more references regarding model val-
idation and simulation.

Business process modeling comes from another perspective, but has the
same final goal as our problem. For example, [Liu04] uses abstract logic trees
to represent UML activity diagrams, allowing the study of their properties
using graph algorithms. Also, [Hol04] and [Gru07] compare structured pro-
gramming primitives with UML activity diagrams, studying graphical ways of
representing structured processes.

Another industry initiative related to model specification, validation, and
simulation is AGEDIS - Automated Generation and Execution of Test Suites
for DIstributed Component-based Software [AGEDIS], a project ended in
2004.

3. THE SOLUTION: ComDeValCo

The proposed solution is ComDeValCo - a conceptual framework for
Software Components Definition, Validation, and Composition. Its con-
stituents are meant to cover both sub-processes discussed in 2.1: component
development and component-based system development. This paper should be
seen as a presentation of a solution for these two interconnected sub-processes
and as a plan for the further developments of the framework.

The sub-process of component development starts with its definition, us-
ing an object-oriented modeling language, and graphical tools. The model-
ing language provides the necessary precision and consistency, and the use of
graphical tools simplifies developer’s work, which doesn’t need to know the no-
tations of modeling language. Once defined, component models are passed to
a V & V (verification and validation) process, which is indended to check their
correctness and to evaluate their performances. When a component passes V
& V step, it is stored in a component repository, for later (re)use.

The sub-process of component-based system development takes the compo-
nents already stored in repository and uses graphical tools, intended to: select
components fulfilling a specific requirement, perform consistency checks re-
garding component assembly and include a component in the already existing
architecture of the target system. When the assembly process is completed,
and the target system is built, other tools will perform V & V, as well as
performance evaluation operations on it.



64 PÂRV, MOTOGNA, LAZĂR, CZIBULA, AND LAZĂR

Constituents of the conceptual framework are: the modeling language,
the component repository and the toolset. Any model of a software compo-
nent is described by means of a modeling language, programming language-
independent, in which all modeling elements are objects. The component
repository represents the persistent part of the framework and its goal is to
store and retrieve valid component models. The toolset is aimed to help de-
velopers to define, check, and validate software components and systems, as
well as to provide maintenance operations for the component repository.

The rest of this section gives a short description of the above constituents,
illustrating their current status and intended further developments. More
detalied descriptions will be given in separate papers.

3.1. Modeling language. The software component model is described by
an object-oriented modeling language, all modeling elements being objects.
The modeling language is independent from any object-oriented programming
language and has the following features:

• all language elements (constructs) are objects, instances of classes de-
fined at logical level, with no relationship to a concrete object-oriented
programming language;

• language constructs cover both categories of software component dis-
cussed - the target software system - Program (the only executable)
and proper software components (not executable by themselves, but
ready to be assembled into a software system) - Procedure, Function,
Module, Class, Interface, Connector, Component;

• there is a 1:1 relationship between the internal representation of the
component model - seen as aggregated object - and its external repre-
sentation on a persistent media, using various formats: XML, object
serialization, etc.

A software component is fully defined, i.e. its model contains both com-
ponent specification and component implementation. For example, Program
components have three main constituents: the name, the state and the body.
Procedure components, which are a specialization of Program,have as specific
constituents their in, out, and in-out parameters (seen as lists). Component
state contains all declared variables (names and values), while its body is a
CompoundStatement (modeling construct defined using the Composite design
pattern). Figure 1 is a UML class diagram showing some of the modeling
elements already in place and their relationships. These elements constitute a
UML metamodel, and can be used to build new UML profiles, in order to use
existing CASE tools to build component models.

Statement subclasses are SimpleStatement and CompoundStatement,with
SimpleStatement subclasses covering all control statements in an imperative



COMDEVALCO 65

Figure 1. Class diagram (procedural paradigm, proof of concept)

programming language: AssignmentStatement, CallStatement, InputStatement,
OutputStatement, LoopStatement,and BranchStatement.

The current version of the modeling language contains constructs belong-
ing to the procedural paradigm, and is described in more detail in [Parv08].

3.2. Component repository. Component repository represents the persis-
tent part of the framework, containing the models of all full validated com-
ponents. Its development include the design of its data model, establishing
indexing and searching criteria, as well as the format of representation. The
ways of describing, indexing and searching considered will exploit XML-based
protocols used to describe and discover Web services (WSDL and UDDI).

3.3. The toolset. The toolset is intended to automate many tasks and to
assist developers in performing component definition and V & V tasks, main-
tenance of component repository, and component assembly. The tools are:

• DEFCOMP - component definition;
• VALCOMP - component V & V;
• REPCOMP - component repository management;
• DEFSYS, VALSYS - software system definition by component assem-

bly, respectively V & V;
• SIMCOMP, SIMSYS - component and software system simulation;
• GENEXE - automatic generation of executable software systems.

From another perspective, the toolset will include some existing CASE
tools, covering in part or in whole some of the functions above.



66 PÂRV, MOTOGNA, LAZĂR, CZIBULA, AND LAZĂR

3.4. Features of the proposed solution. The proposed solution brings
original elements in at least the following directions:
- the object model is precise and fine-grained, because all objects are
rigorously defined, and the component behavior is described at statement
level. The UML metamodel has no correspondent for modeling constructs
more fine-grained than Program, Procedure and Function;
- the models are executable, verifiable, and evaluable because each
component can be executed; moreover, one can use tools for checking validity
and evaluating complexity;
- the models are independent of a specific (object-oriented) programming
language and programming paradigm;
- modeling language is flexible and extensible; the dimensions of extensibility
are: statement set, component definition, data type definition, and the
component family;
- the statement set is extensible, by simply considering new (possible)
primitive statements; as Figure 1 suggests, inheritance and composition are
the main code reuse mechanisms used to define new statements;
- the component definition is extensible (we started with the simplest
implementation of the component, using simple data types and expressions;
next steps will include component specification, which needs more elaborate
data types and expressions);
- data type definitions are also extensible (we started with simple data types;
next steps will add structured types to the model, then object types -
Classand Interface);
- the component family is extensible (we started with procedural paradigm
components - Program , Procedure and Function;next steps will add:
modular components - Module - object-oriented ones - Class and
Interface,and, finally - Component);
- modeling language allows automatic code generation for components in a
concrete programming language, according to Model Driven Architecture
(MDA) specifications. One can define mappings from the modeling elements
to specific constructs in a concrete programming language in a declarative
way.

4. CONCLUSIONS AND FURTHER WORK

From methodological viewpoint, the main issue is to completely model all
theoretical aspects in concrete objects - elements of modeling language. The
modeling process is a gradual one, in order to keep its complexity under con-
trol. The main principle to be followed is to perform small steps; a step means
here either implementing a new concept (transforming the concept into an
object), or extending either a model element, a tool, or component repository



COMDEVALCO 67

(by adding new features). One starts with simple objects and check after each
step that things work.

Each modeling step include both theoretical/analytical activities - the ab-
stract model of the concept - and practical/applicative ones - coding, testing
and integrating it in the framework.

The intended use of the conceptual framework covers research, education,
and industry applications. The competitive advantages are as follows:

• full compliance to the principles and methods of component-based soft-
ware development, by covering both sub-processes - component and
system development;

• high level of abstraction, assured by the independence of a specific
programming language;

• ease of use: the model complexity is hidden behind a set of diagrams
(model views), easy to define, understand, and manipulate;

• focus on reuse: the framework favors the definition and use of reusable
software components by its constituent: component repository.

Other developments will include: maintenance of component repository by
including new components, publishing the access interface to the component
repository as a Web service, modeling at higher levels of abstraction, like
workflows, business processes, application domain frameworks.

5. ACKNOWLEDGEMENTS

This work was supported by the grant ID 546, sponsored by NURC -
Romanian National University Research Council (CNCSIS).

6. REFERENCES

[AGEDIS] AGEDIS, Automated Generation and Execution of Test Suites for DIs-
tributed Component-based Software, http://www.agedis.de/index.shtml/.

[AW] W.van der Aalst, PetriNets, tutorial http://is.tm.tue.nl/staff/wvdaalst/petri nets.htm.
[CL02] Crnkovic, I., Larsson, M., Building Reliable Component-Based Software

Sistems, Prentice Hall International, Artech House Publishers, ISBN 1-58053-327-2,
Available July 2002. http://www.idt.mdh.se/cbse-book/

[EG03] Eleftherakis, G., Formal Verification of X-machine Models: Towards For-
mal Development of Computer-Based Sistems, PhD, 2003.

[GM95] Glinz, M., An Integrated Formal Model of Scenarios Based on State-
charts. In Schfer, W. and Botella, P. (eds.): Software Engineering - ESEC’95. Berlin:
Springer, 254-271.

[Gru07] Gruhn, V., Laue, R., What business process modelers can learn from
programmers, Science of Computer Programming, 16 (2007), No. 1, 4-13.

[Hol04] Holl A., Valentin G., Structured Business Process Modeling (SBPM), In-
formation Systems Research in Scandinavia (IRIS 27), 2004.



68 PÂRV, MOTOGNA, LAZĂR, CZIBULA, AND LAZĂR

[HHW01] Henderson, P., Howard Y., Walters, R.J., A tool for evaluation of the
Software Development Process, Journal of Systems and Software, Vol 59, No 3, pp
355-362 (2001).

[HW99] Henderson, P., Walters, R.J., System Design Validation Using Formal
Models, 10th IEEE International Workshop in Rapid System Prototyping, June 99,
Clearwater, USA.

[HW00] Henderson, P., Walters, R.J., Behavioural Analysis of Component-Based
Sistems, Declarative Sistems and Software Engineering Research Group, Department
of Electronics and Computer Science, University of Southampton, Southampton, UK,
06 June 2000.

[HWC04] Henderson, P., Walters, R.J., Crouch, S., Implementing Hierarchical
Features in a Graphically Based Formal Modelling Language, 28th Annual Interna-
tional Computer Software and Applications Conference (COMPSAC 2004), Hong
Kong, 2004.

[Liu04] Ying Liu et al., Business Process Modeling in Abstract Logic Tree, IBM
Research Report RC23444 (C0411-006) November 19, 2004.

[LL00] Jie Liu, Edward A. L., Component-Based Hierarchical Modeling of Sys-
tems with Continuous and Discrete Dynamics, Proc. of the 2000 IEEE International
Symposium on Computer-Aided Control System Design Anchorage, Alaska, USA,
September 25-27, 2000, pp 95-100.

[OMG] OMG, Current OMG Technology Adoption Processes Under Way. Pend-
ing Requests for Proposals, http://www.omg.org/public schedule/.

[OMG05a] OMG, Semantics of a Foundational Subset for Executable UML Models
RFP, http://www.omg.org/cgi-bin/doc?ad/2005-4-2/.

[OMG05b] OMG, Model-level Testing and Debugging, http://www.omg.org/cgi-
bin/doc?ptc/2007-05-14/.

[OMG05c] OMG, Catalog of OMG Domain Specifications, http://www.omg.org/cgi-
bin/doc?ad/2005-4-2/.

[Parv08] Pârv, B., Lazăr, I., Motogna, S., ComDeValCo framework - the mod-
eling language for procedural paradigm, to be published in International Journal of
Computers, Communications, and Control (IJCCC), vol. III, 2008.

[PJ02] Padberg, J., Petri Net Modules, Journal on Integrated Design and Process
Technology vol. 6(4), pp. 121-137, 2002.

[WR02] Walters R. J., A Graphically based language for constructing, executing
and analysing models of software sistems, PhD, 2002.

Department of Computer Science, Faculty of Mathematics and Computer
Science, Babeş-Bolyai University, 1, M. Kogălniceanu, Cluj-Napoca 400084, Ro-
mania

E-mail address: bparv,motogna,ilazar,czibula@cs.ubbcluj.ro


