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TOWARD A SIMPLE PHONEME BASED SPEECH
RECOGNITION SYSTEM

MARGIT ANTAL

Abstract. This paper presents a simple speech recognition system using

Gaussian mixtures as phoneme models. The proposed architecture does

not follow the integrated search strategy. Instead we use a modular design.

We propose two modifications to the Viterbi decoding algorithm in order

to be applicable to our phoneme models. Both strategies have been imple-

mented and tested on two corpora. Experiments have proved our phoneme

recognition system reliability and its good recognition performance.

1. Introduction

The purpose of this paper is to present our findings during the construction
and evaluation of our phoneme based speech recognition system. Despite the
fact that good software packages already exist for solving this problem, we
decided to develop our own software. The main objective was to use state
of the art techniques, but only those which do not contradict human speech
recognition. A secondary objective was to simplify the architecture of such a
system to the extent of not decreasing the system performance and its usability.
Nowadays it is important to create constrained speech recognition systems,
which work reasonably in a low resource environment.

State of the art automatic speech recognition (ASR) is based on modelling
the phonemes with hidden Markov models (HMM), using the well known three
state left to right topology for each phoneme. This model incorporates an in-
herent phoneme duration, modeled by the state transition probabilities. Sev-
eral papers [5, 8, 10, 11] noticed the negligible effect of these state transition
probabilities on the recognition rate in HMM based ASR, and hence it is usual
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to ignore them or use the same value for each transition probability. Due to
this observation we modeled every phoneme with a one state HMM, which can
be considered as a Gaussian mixture (GMM).

Phoneme duration is an important problem for speech comprehension,
especially in languages like Hungarian, in which most of the phonemes has
both a short and long form. These durations are so important that even the
written language uses different letters for each vowel, one for the short and one
for the long form of the same phoneme. In the case of consonants there are no
different written forms, but the letter is doubled. Good duration modelling can
therefore be a major issue in these languages, not only for speech recognition
but for speech synthesis too.

As a first step we performed some phoneme classification experiments in
order to evaluate our phoneme models. These GMM phoneme models per-
formed so well that we could go further to the problem of phoneme recog-
nition. In this step we had to modify the classic Viterbi decoding algorithm
(given by formula (13)) in order to make it suitable for GMM phoneme models.
We should mention that the classic Viterbi algorithm without state transition
probabilities (omitting the state transition matrix aij from formula (13)) made
a huge number of insertion errors. In order to overcome this, our first attempt
was to introduce explicit phoneme durations computed from speech corpora
into the decoding process. The idea was taken from [9], but we simplified
it. Levinson used statistical models for phoneme duration modelling (Gamma
distributions), we used only the minimum and maximum duration for each
phoneme. We went even further in simplifying this duration modelling by
using the same fixed durational minimum and maximum for each phoneme.
As this increased the decoding algorithm complexity by a factor D, which is
the maximum duration of phonemes, we tried to find a cheaper solution for
decoding.

In the second attempt we made another adaptation of the Viterbi algo-
rithm for monophone one-state models, which introduces an empirical constant
in order to be able to control the insertion errors. As we prove experimentally,
this constant incorporates the average phoneme duration implicitly. This was
our conclusion after we have tuned this parameter for two corpora: TIMIT the
well-known English corpus and OASIS, a small Hungarian corpus for isolated
word recognition.

Several measurements were carried out in order to demonstrate the vi-
ability of this simplified strategy. Whenever it was possible, we compared
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our results with other results obtained on the same corpora, eventually us-
ing different phoneme modelling techniques. However, the purpose was not to
outperform state of the art technologies, but the construction of such a system
that is simple and efficient for some constrained speech recognition tasks.

This paper is organized as follows. Section 2 presents the architecture
of our system, the feature extraction module, the acoustic-phonetic module,
which is a standard GMM and the decoding module in which we propose
modifications to the Viterbi algorithm. In section 3, we present the corpora
used for experiments and the evaluations of the proposed decoding methods.
We end with discussion and conclusions.

2. The recognition system

Our speech recognition system has a very simple modular architecture.
The first module of the system is the feature extraction module. The extrac-
tion of Mel-frequency cepstral coefficients (MFCC) is presented in subsection
2.1. In this module only standard methods were used as recommended in
[3, 5, 12].

The second module is the acoustic-phonetic module. We used Gaussian
mixture models for training the phonemes based on phonetically segmented
and annotated corpora. Once this stage is completed we can evaluate the
phoneme models. As we have stated already, we used context independent
phonemes modeled by Gaussian mixtures.

The third module is the phonetic decoding module containing two modified
versions of the Viterbi decoding algorithm.

2.1. Feature extraction module. The extraction of reliable features is a
very important issue in speech recognition. There are a large number of fea-
tures we can use. Among others we can use is the speech waveform itself.
However this has two main shortcomings. The first one is the dimension of
this feature, and the second one is that time domain features are much less
accurate than frequency-domain features. In the following we present the ex-
traction of Mel-frequency cepstrum coefficients used in our system. This was
implemented based on [5].

In our system the acoustic analysis of the speech signal was done by short-
time spectrum analysis with 20 ms frames and 10 ms overlap between consec-
utive frames. For a frame length of 20 ms it can be assumed that the speech
signal is stationary, allowing the computation of short-time Fourier spectrum.
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Let us denote by x[n], n = 0, 1, . . . , N − 1 the samples from a frame. For this
input signal we compute the Discrete Fourier Transform (DFT):

(1) X[k] =
N−1∑

n=0

x[n]e−j(2π/N)kn, k = 0, 1, . . . , N − 1

In order to reduce the dimension of the feature vector a filterbank com-
posed of M triangular filters was used. The equation of the mth triangular
filter is the following.

(2) Hm[k] =





0 k < f [m− 1]
k−f [m−1]

f [m]−f [m−1] f [m− 1] ≤ k ≤ f [m]
f [m+1]−k

f [m+1]−f [m] f [m] ≤ k ≤ f [m + 1]
0 k > f [m + 1]

Such filters compute the average spectrum around each center frequency
with increasing bandwidths.

Let us denote by fl and fh the lowest and the highest frequencies of the
filterbank in Hz, Fs the sampling frequency in Hz, M the number of filters,
and N the size of DFT.

The filterbank’s boundary points f [m] are uniformly spaced in the mel-
scale:

(3) f [m] =
N

Fs
B−1(B(fl) + m

B(fh)−B(fl)
M + 1

)

where the mel-scale B is given by

(4) B(f) = 1125ln(1 + f/700)

and B−1 is its inverse

(5) B−1(b) = 700(e
1

1125 − 1)

The next step is the computation of log-energy at the output of each filter

(6) S[m] = ln(
N−1∑

k=0

|X[k]|2Hm[k]), 1 ≤ m ≤ M

The Mel-frequency cepstrum is then the discrete cosine transform of the
M filter outputs:
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(7) c[n] =
M−1∑

m=0

S[m]cos(
πn

M
(m− 1

2
)) 0 ≤ n < M

For speech recognition applications it is typical to use a number of filters
M between 24 and 40 and to evaluate only the first 13 coefficients given by
equation (7). In our experiments we used M = 28 filters.

Temporal changes in spectra play an important role in human perception.
One way to capture this information is to use delta coefficients that measure
the change in coefficients over time. Delta features were obtained by evaluating
the first and the second order delta cepstral coefficients given by the following
equations

(8) ∆ck =
2(ck+2 − ck−2) + (ck+1 − ck−1)

10

(9) ∆∆ck =
2(∆ck+2 −∆ck−2) + (∆ck+1 −∆ck−1)

10
where ck represents the feature vector containing the first 13 MFCC coef-

ficients obtained using formula (7) for the kth time frame.
The combined cepstral, first and second order delta cepstral vectors form

a set of 39-parameter feature vector (observation vector) ok =




ck

∆ck

∆∆ck


,

which were used in all the experiments described in this paper.

2.2. The Acoustic-Phonetic module. Observation densities in phonemes
are modeled by mixtures of multivariate Gaussians. The proper number of
Gaussians can be estimated separately for every phoneme or can be fixed the
same value for every phoneme. We used the latter approach. Let us denote
by M the number of Gaussian densities. In this case the observation density
function for phoneme i, bi(−→ot ) has the form

(10) bi(−→ot ) =
M∑

j=1

wij .
1

(2π)D/2|Σij |1/2
· e− 1

2
(−→ot−−→µij)

T Σ−1
ij (−→ot−−→µij))

where D represents the dimensionality of the −→ot observation (feature vector),
−→µij and Σij are the mean vector and the covariance matrix for the jth mixture
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component. For every phoneme the mixture weights sum to unity (
∑M

j=1 wij =
1) in order to have a true probability function.

The complete model thus consists of the set of n phonemes, the ith phoneme
being modeled by a GMM with the parameters (wij ,

−→µij , Σij), 1 ≤ j ≤ M . −→µij

is a mean vector composed by D real numbers. We used diagonal covariance
matrix, hence it can be represented by D real numbers. The complete model
can be represented using n∗M ∗ (1+D +D) = n∗M ∗ (2D +1) real numbers.

2.3. Phonetic decoding module. Let us denote by O = {−→o1 ,
−→o2 , . . .−→oT }

the acoustic observation sequence, which has to be decoded into a phoneme
sequence. The set of all phoneme sequences will be denoted by F . Essentially
the task here is to find f̂ ∈ F defined by

(11) f̂ = arg max
f∈F

P (f |O) = arg max
f∈F

P (O|f) · P (f)
P (O)

where P (f) is known as the phonetic language model. Assuming that any
observation sequence is equally likely, equation (11) becomes

(12) f̂ = arg max
f∈F

P (O|f) · P (f)

Equation (12) expresses that we face a search problem. Phonetic tran-
scription reduces to the task of finding the most likely phoneme sequence for
the input sequence of acoustic vectors.

For HMM phoneme models Viterbi algorithm [5] solves the problem of
finding the most probable state sequence.

We review the classic Viterbi algorithm, which will be adapted to our
phoneme models in the following section. Let αt(j) denote the maximum
likelihood of −→o1 ,

−→o2 , . . .−→ot over all state sequences terminating in state j.
This quantity can be evaluated recursively according to

(13) αt(j) = max
1≤i≤n

[αt−1(i) · aij ] · bj(−→ot )

where aij represents the state transition probability between state i and state
j, bj(−→ot ) is the observation probability of −→ot in state j

At every time instance we retain Bt(j) =arg max1≤i≤n [αt−1(i) · aij ], 1 ≤
j ≤ n in order to be able to back trace the optimal path through the trellis.

The Viterbi algorithm presented previously is based on dynamic program-
ming technique. Essentially it is a planar search algorithm through a lattice,
where the lattice consists of points representing phoneme likelihoods for each
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Figure 1. Search space

time instance. This search space is shown for the digit one (”egy” in Hungar-
ian) in figure 1.

2.3.1. Explicit usage of durations. According to paper [14] it can be useful for
the recognition stage to set a minimum number of frames, which can constitute
a phoneme. This setting will help the decoder to decrease the number of
insertion errors.

Instead of using complicated durational models we propose a simple mod-
ification of equation (13), which can be expressed as

(14) αt(j) = max
1≤i≤n

{
max

τmin≤τ≤τmax

{
αt−τ (i) · aij ·

τ−1∏

Θ=0

bj(−−→ot−Θ)

}}

for 1 ≤ j ≤ n, 1 ≤ t ≤ T , where τmin and τmax are the minimum and
maximum allowable durations for any phonetic unit. It is supposed that ob-
servations are independent then

∏τ−1
Θ=0 bj(−−→ot−Θ) computes the probability of

the observation sequence −−−−→ot−τ+1,
−−−−→ot−τ+2, . . .

−→ot in the state j. Esentially we
compute this probability for every allowed length τ , where τmin ≤ τ ≤ τmax.
Retaining at each stage of the recursion the values i and τ that maximize (14),
makes possible back tracing through αt(j) in order to obtain the best state
and duration sequences.
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In our system every phoneme is modeled by a one-state HMM so we could
not use state transition probabilities, instead we used the following formula:

(15) aij =
{

1, phonej is allowed to follow phonei

0, otherwise

which can be seen as a very simple language model. Using (15) reduces sub-
stantially the search space.

We computed the minimum τmin(j) and maximum duration τmax(j) of
every phoneme j = 1 . . . n, which were incorporated in formula (14) resulting
in

(16) αt(j) = max
1≤i≤n

{
max

τmin(j)≤τ≤τmax(j)

{
αt−τ (i) · aij ·

τ−1∏

Θ=0

bj(−−→ot−Θ)

}}

Section 3 presents experiments using both formulae: (14), (16).

2.3.2. Implicit duration modelling. Another approach to phoneme decoding is
to use the Viterbi algorithm directly for the context independent phoneme
models. In this case the state transition probabilities do not exist and we
should omit in equation (13). Omitting state transition probabilities resulted
in a huge number of insertion errors, which should be somehow overcome.

Firstly, we used the logarithmic form of Viterbi approximation as shown
in the following formula:

(17) log αt(j) = max
1≤i≤n

{log αt−1(i) + log aij}+ log bj(−→ot )

Instead of omitting the term log aij , we propose replacing it by Iij , which
is given as

(18) Iij =
{

β, if i = j

0, otherwise

with β > 0, and the final formula for Viterbi approximation became:

(19) log αt(j) = max
1≤i≤n

{log αt−1(i) + Iij}+ log bj(−→ot )

Because larger β values will result in larger phoneme durations in the decoded
phoneme sequence, this decoding process incorporates implicitly the average
phoneme duration. It can be proved experimentally that the optimal value
of the β parameter and the average phoneme duration for a given language
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are directly proportionals. We should note that our method proposed for
decoding is very similar to that proposed by Robinson in [13]. Robinson used
a recurrent neural network for phoneme classification and for the decoding
process he used a dynamic programming approach. In the decoding formula it
was introduced a transitional cost, similar to the state transition probability
in HMM. He worked with distances instead of probabilities, but the ideas are
very similar. Moreover, he tried to introduce duration information and bigram
probabilities into the transition function and observed that these additional
information did not increased significantly the recognition accuracy.

3. Experiments

For measurements we used our software written in C++ language, which
has a modular design being composed by a signal processing module for MFCC
feature extraction, a Gaussian mixture module and a decoder module. The
signal processing and the Gaussian mixture modules were successfully used for
speaker identification systems too[1].

3.1. Evaluation. The standard evaluation metric for phoneme recognition
systems is the phoneme error rate (PER). The PER measures the difference
between the phoneme string returned by the recognizer and the correct refer-
ence transcription. The distance between the two phoneme strings is computed
by the classical minimum edit distance algorithm [5]. The result of compu-
tation will be the minimum number of phoneme substitutions, insertions and
deletions necessary to map between the correct and hypothesized strings. This
can be expressed by the formula

(20) PER = 100 · I + S + D

N

where N represents the number of phonemes in the correct transcription, I, S

and D represent the number of insertions, substitutions and deletions. Recog-
nition accuracy is computed as

(21) A = 100− PER

Another performance measure could be the number of correct phonemes
returned by the recogniser, which can be computed by the minimum distance
algorithm. This will be denoted by C.
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3.2. Corpora. We used two corpora for the experiments, the first one was
TIMIT, a well known American English corpus, and the second one was OASIS
Numbers, a small Hungarian corpus designed for number recognition. Because
TIMIT is well known, we describe shortly only the Hungarian corpus.

The OASIS corpus is a small isolated -number corpus being developed at
the Research Group on Artificial Intelligence of the Hungarian Academy of
Sciences. The segmented part of the corpus contains speech from 26 speakers:
1 child, 9 female and 16 male voices. Each speaker reads the same 26 words
twice. Any Hungarian number can be formed by concatenation from this set
of 26 numbers. Each word is manually segmented and labelled phonetically.
Twenty speakers were used for training and six speakers for testing. The
corpus contains 31 phonemes, annotated using SAMPA symbols. The only
modification was made for the notation of stop symbols, where instead of using
one symbol, the closure part and the burst part were annotated separately.
For the voiceless closure part it is used the symbol /− / while for the voiced
closure part the symbol / + /. For example instead of the symbol /t/ it were
used two symbols:/ − /and /′t/. Further information on this corpus can be
found in [6, 7, 15]. Table 1 presents the exact content of the corpus used for
training and test.

For the TIMIT corpus the phoneme models consist of 61∗32∗(2∗39+1) =
154208 real numbers and for the OASIS corpus 31 ∗ 16 ∗ (2 ∗ 39 + 1) = 39184
real numbers.

3.2.1. Explicit usage of durations. Our first attempt to phoneme duration
modelling was a data driven approach. The minimum, maximum and the av-
erage phoneme durations were determined based on corpora. Figure 2 shows
these values for the OASIS corpus.

In the first three experiments we used the same minimum and maximum
duration for every phoneme and in the fourth experiment we introduced those
shown in figure 2. Results are reported in table 2.

3.2.2. Implicit duration modelling. Using the second approach, firstly we present
the phoneme recognition experiments for the TIMIT corpus. We used all the
61 phonemes of the corpus without grouping allophones. This will serve as a
baseline for further system improvements. The first step was to determine the
optimal value for β parameter introduced to the Viterbi decoding algorithm.

For training we used the whole training part of the corpus. For evaluation
we used two sets, a smaller timit test core and a larger one timit test, both had
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Phoneme Training Test Phoneme Training Test
- 519 156 i: 40 12
-: 40 12 j 80 24
’d’ 118 36 J 80 24
’k 200 60 l 200 60
’t 399 120 l: 40 12
’ts 200 60 m 120 36
+ 120 36 n 559 168
˜ 2080 624 O 240 72
2 80 24 o 160 48
:2 40 12 o: 40 12
A: 120 36 r 160 48
E 600 180 s 160 48
e: 160 48 u 80 24
h 306 96 u: 40 12
i 240 72 v 240 72

z 240 72
Table 1. Phoneme frequencies in training and test part of the corpus
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Figure 2. OASIS-Minimum, maximum and average phoneme durations
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Dur. D I S A C
1..50 0.04% 73.10% 2.54% 24.30% 97.40%
2..50 0.17% 27.72% 3.45% 68.65% 96.37%
3..50 0.69% 17.09% 4.66% 77.54% 96.64%

τmin..τmax 1.12% 15.71% 6.21% 76.94% 92.65%
Table 2. Phoneme recognition -OASIS - explicit phoneme durations

Evaluation β D I S A C
timit test core 11 7.41% 7.68% 37.76% 47.14% 54.81%
7525 phonemes 13 9.75% 4.81% 36.37% 49.06% 53.87%
TR: 61 models 15 12.14% 3.21% 34.79% 49.84% 53.06%
TE: 61 models 17 14.35% 2.19% 33.27% 50.17% 52.37%

20 18% 1.26% 30.88% 49.86% 51.12%
timit test 11 6.79% 7.39% 34.54% 51.27% 58.66%
65825 phonemes 13 9.13% 4.76% 33.12% 52.98% 57.74%
TR: 61 models 15 11.42% 3.24% 31.66% 53.67% 56.91%
TE: 61 models 17 13.7% 2.21% 30.18% 53.90% 56.11%

20 17.16% 1.31% 28.12% 53.40% 54.71%
timit test 11 7.03% 7.63% 25.68% 59.65% 67.28%
65825 phonemes 13 9.35% 4.97% 24.48% 61.18% 66.16%
TR: 61 models 15 11.55% 3.37% 23.38% 61.68% 65.05%
TE: 39 models 17 13.81% 2.32% 22.16% 61.70% 64.00%

20 17.22% 1.37% 20.45% 60.95% 62.32%
Table 3. Phoneme recognition - TIMIT

been proposed by the creators of the corpus. While the smaller set contains
192 sentences, the larger one is formed by 1680 sentences. Table 3 shows
the recognition accuracies together with the three type of errors for various
values of the β parameter. As phoneme models 32 Gaussians models were
used with diagonal covariance matrices. The first evaluation set timit test core
contains 7525 phones, while timit test contains 65825 phones. These results
were obtained without using language model, which means that it was allowed
for every phoneme to follow every other phoneme.

In the third part of the table 3 we present the results obtained by the same
experiments with a modification in the interpretation of the decoding process.
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Paper Method LM TR TE ACC. CORR.
Ostendorf[4] SSM+CI bigram 61 39 64.20% 70.00%
This paper GMM+CI 0gram 61 39 61.70% 64.00%

Robinson[13] REPN+CD 0gram 61 61 61.70% 69.10%
Robinson[13] REPN+CD bigram 61 61 63.50% 70.00%
Robinson[13] REPN+CD bigram 61 39 69.80% 76.50%
Table 4. TIMIT - Phoneme recognition. LM - Language
Model, TR - Number of phoneme models trained, TE - Num-
ber of phoneme models for decoding, ACC -Accuracy, CORR
-Correct, SSM - Stochastic Segment Model, REPN - Recur-
rent Error Propagation Network, CI - Context Independent
phoneme models, CD - Context Dependent phoneme models

We used 61 phoneme models for decoding, but before applying the minimum
distance algorithm, we converted the 61 phonemes to the 39 phoneme groups,
as suggested by the creators of the corpus. This step reduced substantially the
substitution errors, which suggests us that the phoneme grouping influences
mainly the substitution errors.

Table 4 presents comparative results obtained on TIMIT. It can be seen
that the best results were obtained by the neural network modelling, how-
ever this model is not fully comparable to the other two papers because this
represents a context dependent modelling of the phonemes.

In the following we present results obtained for the Hungarian corpus. In
this case, due to the limited amount of training data we used as phoneme
models mixtures of 16 Gaussians.

Table 5 presents the recognition results obtained for various values of the
β parameter. Figure 3 shows β parameter tuning for both corpora.

Our results compare favorably with those published in [15] on this cor-
pus. They reported 82.05% recognition accuracy, using a hybrid ANN-HMM
framework.

4. Discussion and conclusions

One of the most important finding of this work is that we achieved very
good phoneme recognition accuracy with a very simple phoneme modelling
and an even simpler phonetic decoding strategy. The second decoding strat-
egy, in which we introduced the parameter β performed better than the first
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β D I S A C
11 0.52% 27.93% 5.18% 66.36% 94.30%
13 0.82% 21.80% 5.53% 71.85% 93.65%
15 1.42% 17.35% 5.65% 75.56% 92.91%
17 1.68% 14.35% 5.95% 78.02% 92.05%
20 2.37% 11.27% 6.00% 80.35% 91.62%
23 3.49% 9.15% 5.82% 81.51% 90.67%
25 4.06% 7.77% 5.78% 82.38% 90.15%
27 4.83% 7.08% 5.83% 82.25% 89.33%
30 6.43% 5.82% 5.70% 82.03% 87.86%

Table 5. Phoneme recognition - OASIS - implicit duration modelling
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Figure 3. Phoneme recognition vs. β parameter

one, which considers different phoneme durations. Not only the recognition
accuracy is better in the second approach, but the algorithm itself is a very
efficient one.

Most of the papers working with the TIMIT corpus report phoneme recog-
nition results for the reduced phoneme set. In order to produce comparable
results, before computing the minimum edit distance between the recognised
phoneme string and the original one, we converted the phonemes to their
phoneme groups. This yields a better recognition accuracy, decreasing espe-
cially the substitution errors. In this way working with the reduced phoneme
set increased approximately with 8% the recognition accuracy. For the 39
phoneme groups we obtained 61.70% recognition accuracy without using any
phoneme level language model. The first decoding approach was not used for



TOWARD A SIMPLE PHONEME BASED SPEECH RECOGNITION SYSTEM 47

TIMIT as this algorithm is a very inefficient one and has increased the time
for decoding.

For the OASIS corpus both the proposed decoding techniques were evalu-
ated. For the first decoding technique we have found that imposing a minimum
phoneme duration (3 frames in our case) yields the same good result as using
the phoneme specific minimum and maximum durations. This could be due
to the limited amount of training data in this corpus. We should note that
3 frames roughly corresponds to the average of minimum durations over the
whole phoneme set. The second decoding technique has shown its superiority
over the first one. With the parameter β tuned for maximum accuracy we
obtained 82.38% recognition accuracy, which compares favorably to 82.05%
found in [15].

We believe that the most important finding is that we obtained these re-
sults by using only models and algorithms which do not contradict in their
functionality human speech recognition. Despite the fact that phoneme recog-
nition accuracy was not increased, our simple phoneme recognition system
warrants stable and reliable behaviour with a good recognition performance.
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