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COMPONENT-BASED ANT SYSTEM FOR

A BIOBJECTIVE ASSIGNMENT PROBLEM

CAMELIA-M. PINTEA AND ANDREEA VESCAN

Abstract. The paper proposes a component-based approach for a partic-
ular biobjective assignment problem: the Airport Gate Assignment Prob-
lem (AGAP). ACS-QAP [2] is the starting point for the proposed ACS
model for solving an over-constrained version of AGAP, seeking feasible
flight-to-gate assignments so that total passenger connection time, as prox-
ied by walking distances, is minimized.

1. Introduction

Since the late 90’s Component Based Development (CBD) is a very active
area of research and development. CBSE covers both component development
and system development with components [6]. There is a slight difference in
the requirements and business ideas in the two cases and different approaches
are necessary. Of course, when developing components, other components can
be (and often must be) incorporated and the main emphasis is on reusability.
Development using components is focused on the identification of reusable
entities and relations between them, starting from the system requirements.

The complex biobjective problem modeled for an ant system algorithm
using components is the over-constrained Airport Gate Assignment Problem
(AGAP). The problem has two objectives. The first one to minimize the
number of flights assigned to the apron, when the number of flights exceeds
the number of gates. The second objective is to minimize the total distance
walk of the passengers in the airport.

The preliminary sections of the paper show the specifications of AGAP
and the techniques used to solve the specified problem. The main sections of
the paper show the component-based solution of the ant system algorithm for
solving AGAP including the control flow and data flow.
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2. The Biobjective Assignment Problem

A particular case of a Quadratic Assignment Problem (QAP) it is consid-
ered: the Airport Gate Assignment Problem (AGAP).

There were several attempts to solve AGAP. We are mentioning a Tabu
Search metaheuristic by Xu and Bailey [17]. Another algorithm for solving
AGAP was proposed by Ding et al. [7] with a greedy algorithm minimizing
ungated flights while providing initial feasible solutions followed by a new
neighborhood search technique.

The gate assignment problem has the objective of minimizing distance
costs of the over constrained gate assignment problem, minimizing the number
of ungated aircrafts and the total walking distances.

We consider the notations as in [7]:
N : set of flights arriving at the airport and/or departing from the airport;
M : set of gates available at the airport;
n: total number of flights, i.e., |N |, where |N | denotes the cardinality of N ;
m: total number of gates, i.e., |M |;
ai: arrival time of flight i;
di: departure time of flight i;
wkl: walking distance for passengers between the gates k and l;
fij: the number of passengers transferring between two flights i and j;

Two dummy gates are used: gate 0 the entrance or exit of the airport and
gate m + 1 the apron where flights arrive at when no gates are available. yi,k

denotes that flight i is assigned to gate k if yi,k = 1 and otherwise yi,k = 0,
where (0 < k < m + 1).

wk,0 is the walking distance between gate k and the airport entrance or
exit. f0,i is the number of originating departure passengers of flight i. fi,0

is the number of the disembarking arrival passengers of flight i. The walking
distance between the apron and gate k is wm+1,k.

The mathematical model of the biobjective problem: The Airport Gate
Assignment Problem is following.

1. Minimize the number of flights assigned to the apron:

n∑

i=1

yi,m+1 → min,

2. Minimize the total walking distance:

n∑

i=1

n∑

j=1

m+1∑

k=1

m+1∑

l=1

fi,jwk,lyi,kyj,l+
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+

n∑

i=1

m+1∑

l=1

f0,iw0,l +

n∑

i=1

m+1∑

l=1

fi,0wl,0 → min,

The constraints of AGAP are following.

(1)

m+1∑

k=1

yi,k = 1(∀i, 1 ≤ i ≤ n)

These constraints ensure that every flight must be assigned to one and only
one gate or assigned to the apron.

(2) ai < di(∀i, 1 ≤ i ≤ n)

Constraint (2) specifies that each flight’s departure time is later than its arrival
time.

(3) yi,kyj,k(dj − ai)(di − aj) ≤ 0(∀i, j, 1 ≤ i, j ≤ n, k 6= m + 1)

Constraint (3) says that two flights schedule cannot overlap if they are assigned
to the same gate.

(4) yi,k ∈ {0, 1}(∀i, 1 ≤ i ≤ n,∀k, 1 ≤ k ≤ m + 1)

The condition (4) disallows any two flights to be scheduled to the same gate
simultaneously except if they are scheduled to the apron.

2.1. The over-constrained approach. For the over-constrained AGAP, the
first step is to minimize the number of flights that need be assigned to the
apron. The minimal number of flights can be computed by a greedy algorithm
described in [7].

First of all the flights are sorted by the departure time and after that
flights are assigned one by one to the gates. A flight is assigned to an available
gate with latest departure time. If there are no gates available, the flight will
be assigned to the apron.

The solution of the greedy algorithm is the optimal number of flights that
can be scheduled in gates and it is used to provide initial feasible solutions for
the ACS-based algorithm.

3. Ant System for Airport Gate Assignment Problem

The algorithm proposed is an improved version of Ant Colony System
(ACS) for Quadratic Assignment Problem (QAP) [2]. The new algorithm is
called Reinforcing Ant System-QAP (RAS-QAP) where the trail intensity is
locally updated using the inner rule [14] (local update pheromone trails()).

The problem of the Airport Gate Assignment is about finding the feasible
flight-to-gate assignments so that total passenger connection time is mini-
mized. The function we have to minimize is using the distances from check-in
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to gates in the case of embarking or originating passengers, from gates to
check-out in the case of disembarking or destination passengers and from gate
to gate in the case of transfer or connecting passengers.

When the number of aircraft exceeds the number of available gates, in the
over-constrained case, the distance from the apron to the terminal for aircraft
assigned to these areas is also considered.

First are computed the distance potentials and flow potentials as in [17, 7].
Each edge (i, j), at moment t, is labeled by a trail intensity τij(t).

Algorithm 1 RAS-QAP

1: assign initial pheromone levels();
2: compute distance potentials();
3: compute flow potentials();
4: place ants on locations();
5: for (t = 1) to tmax do

6: for (k = 0) to num ants − 1 do

7: build solution for ant(k);
8: local update pheromone trails();
9: compute cost solution for ant(k) based on constraints (1)-(4);

10: if ants[k].cost solution < Best solution.cost solution then

11: Best solution=ants[k].cost solution;
12: Best solution t=t;
13: end if

14: end for

15: update pheromone trails();
16: write experimental results(t);
17: end for

Initially the ants are randomly placed in the graph nodes. At each iteration
an ant moves to a new node. When an ant decides which node is the next
move it does so with a probability based on the distance to that node and the
amount of trail intensity on the connecting edge. Evaporation takes place, at
each step, to stop the intensity trails increasing unbounded.

Two tabu lists are used. The first tabu list stores the ants visited locations,
so that they never visit them again. The second tabu list stores the activities
that have been mapped to the visited locations.

To favour the selection of an edge that has a high pheromone value and
high visibility value, a probability is considered. Compute cost solution for
ant k and update the best solution. The global update rule is applied to the
edges belonging to the best tour-solution.



COMPONENT-BASED ANT SYSTEM FOR A BIOBJECTIVE ASSIGNMENT PROBLEM25

The solution of the algorithm is the tour with the minimal cost. A solution
is a vector with the potentially best distances, called distance potentials, and
potentially best flows, called flow potentials. The algorithm runs for a given
number of iteration tmax.

4. Component elements

A system can be designed and implemented by assembling components,
customizing or extending them as needed; and publishing components in a
form that can be applied to design and construct others, based purely on
interface specifications.

One of the most popular definitions of a component was offered by a work-
ing group at ECOOP (European Conference on Object-Oriented Program-
ming).

Definition 1. A software component is a unit of composition with contrac-
tually specified interfaces and explicit context dependencies only. A software
component can be deployed independently and it is subject to composition by
third parties. [15]

Clemens Szyperski and David Messerschmitt [15] give the following five cri-
teria for what a software component shall be to fulfill the definition: multiple-
use; non-context-specific; composable with other components; encapsulated
i.e., non - investigable through its interfaces and a unit of independent deploy-
ment and versioning.

We must first establish our entities involved in the component system def-
inition before describing our component-based approach for modeling AGAP.

Considering X a component over the set A of attributes, we will use the
following notations: inports(X) ∈ A - represents the set of input ports (at-
tributes) of the component X; outports(X) ∈ A - represents the set of output
ports (attributes) of the component X; attributes(X) ∈ A - represents the set
of attributes of the component X.

We can view components from a different perspective [10] as simple com-
ponents and compound components with the following characteristics:

• Simple Component - over A is a 5-tuple SC of the form

(inports, outports, attributes, function,≺SC), where :

– inports is a n-tuple (in1, ..., inn) of attributes;
– outports is a m-tuple (out1, ..., outm) of attributes and

(out1, ..., outm) /∈ inports(SC);
– function is an n-ary function

Type(in1) × Type(in2) × ... × Type(inn) →
Type(out1) × Type(out2) × ... × Type(outm).
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– attributes is defined to be the set of attributes consisting of the
inports and the outports;

– the binary relation
≺SC⊆ (inports(SC)× outports(SC)) × outports(SC).

• Compound component - over A is a group of connected compo-
nents, in which the output of a component is used as input by another
component from this group.

A graphical representation of our view of components is given in Figure 1.
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Figure 1. Components graphical representation. The com-
pound component contains two simple components SC1 and
SC2 and one compound component CC1

Two particular components are the source component 1 and the destination
component 2. The source component represents the ”read“ component and the
destination component represents the ”write“ component, components that
should exists in any software system. In our approach every assembly system
(and subsystem) has only one source component and only one destination
component.

4.1. Component construction and execution elements. The wiring of
components in order to construct a component-based system is made using
a connection between the output of a component and the input of another
component.

A connection K is made of an origin - output of a component, and a
destination - input of another component:

K = (origin, destination),

1source component has no inports and generates data provided as outports in order to be
processed by other components

2destination component has no outports and receives data from its inports and usually
displays it, but it does not produce any output
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where origin is an outport of a component; destination is an inport of a com-
ponent.

The composition result is also a component, a compose component using
[10] notation. The resulted system is called BlackBox and is specified as
follows:

BlackBox = ({in}, {out}, {component}, {connection}),

where in represent the inputs for the blackbox; out represent the output of the
blackbox; component represent the components involved in the composition
and connection represent all the connections between the involved components.

The execution of the BlackBox component is composed of sequences of the
form:

(Op0, C0), (Op1, C1), (Op2, C2), ...

where for each i ≥ 0, Opi is a subset of possible operations and Ci is a subset
of components ready for execution.

The possible operations are:

• propagation - this rule moves values that have been generated by a
component along connections from the component’s outport to other
components;

• evaluation - the component function is evaluated and the result is
passed to the output of the component.

State of execution. At a given time of execution, the state is presented
as follows:

State = ({operation}, {componentForEval}),

where operation = {C− >,C =};

• C− > - propagation operation from component C;
• C = - evaluation operation of component C.

componentForEval - a component ready for evaluation.
If at a given time, both types of operation can be performed, the propaga-

tion operation is chosen. Between many evaluation operations, one component
is chosen randomly.

4.2. Component assembly construction process. A top-down approach
is used when reasoning about the way to solve a problem (from the system
requirements develop the needed modules to accomplish the requirements of
the system under development) and a bottom-up approach when assembling
the pieces in order to build the desired final system [16].

The components composition is accomplished using a bottom-up approach:
starting from a given set of components (stored in a repository) there are two
main steps to obtain the final system:
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(1) newly obtained components (if necessary) by assembling given compo-
nents (simple components and/or compound components);

(2) compose the final system from the new set of available components.

Reasoning in a top-down approach we refer to the second step (from the
bottom-up approach) as the first hierarchical level of the final system(s) and
to the first step (which may contain many inside steps to develop new compo-
nents) as intermediary hierarchical levels of the system.

5. Component-based Ant System for Airport Gate Assignment

Problem

This section presents the architecture of the component-based approach
for the AGAP, the control flow and the data flow model. At the end of this
section we show how the computation steps are successively executed.

5.1. AGAP architecture. In section 3 we have presented the ant system
solution for the Airport Gate Assignment Problem. Based on the pseudocode
algorithm we can describe the solution using components as in Figure 2 as
a first level of design: initialization, computation and printing the obtained
results. The next two levels (decompositions) are also presented.

Init Computation PrintRez

DataGen
GreedyAlg

DistFlow
Potential

AntSystem
Algorithm

Cost sol
comp
all ants
constr.
(1)-(4)

Best sol
comp

Build sol
all ants

Update
global

Level I

Level II

Level III

Figure 2. Architectural levels

The second level contains the data generation for the greedy algorithm,
the computation of the distance flow potentials and the ant system algorithm.

The third level contains a more detail view of the ant system algorithm
computation: build solution (for all ants), then cost solution computation (for
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all ants) based on the constraints, best solution computation (for all ants) and
the update global rule computation.

All these computations are performed for tmax steps/times. The build so-
lution computation, cost solution and best solution computation are all com-
puted for all ants, thus the loop is executed until the number ants num ants
(see algorithm 1 for details) is reached.

5.2. Control flow AGAP model. Figure 3 shows the overview of the system
and the control flow.

The
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Cost

Best
Sol

Figure 3. Control flow component-based RAS-QAP system

5.3. Data flow AGAP model. Figure 4 shows the overview of the system
with all the components from all the architecture levels - the data flow. Com-
ponent DataGenGreedyAlg corresponds to the first statement in algorithm
1, component DistF lowPotential to the second, third and fourth statements
and component AntSystemAlgorithm to the rest of the statements.
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Figure 4. Data flow component-based RAS-QAP system
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The data transmitted from the init to the greedy algorithm is that from
the problem description: N - set of flights arriving at (and/or departing from)
the airport, M - set of gates available at the airport, n - total number of flights
and m - total number of gates.

The greedy algorithm gives the optimal number of flights that can be
scheduled in gates.

The DistF lowPotential computes the sums based on the number of pas-
sengers fij and the walking distance from gate k to gate l, wkl.

The AntSystem computes L+, thus minimizing the total walking distance.

5.4. General and internal computation steps. The steps of the computa-
tion of the ant colony component model for AGAP are described successively.

We denote each component from the architecture (see figure 2 and figure 3
for details) with the following acronyms in order to be more easier to read: Init
component with I; DataGenGreedyAlg with DGGA; DistF lowPotential
with DFP ; BuildSol and UpdateLocal with BSUL; CostSol with CS; DiffCost
and BestSol with DCBS; UpdateGlobal with UG and PrintRez with PR.

General computation steps for the representation from figure 4:
• state0 = ({I ≡}, {I});
-N,M,n,m receives the initial values.
• state1 = ({I →}, {});
-data is propagated through the connections to the DGGA component:

N,M,n,m.
• state2 = ({DGGA ≡}, {DGGA});
-the data are generated in the corresponding intervals for ai, di, wkl and

fij. -the greedy algorithm minimizes the number of flights assigned to the
apron and returns the flights array.

• state3 = ({DGGA →}, {});
-DGGA → : data is propagated through the connections to the DFP

component.
• state4 = ({DFP ≡}, {DFP});
-DFP ≡: computes the sums based on the number of passengers fij and

the walking distance wkl from the gate k to gate l.
• state5 = ({DFP →}, {});
-DFP → data is propagated through the connection to the input of the

ASA component.
• state6 = ({ASA ≡}, {ASA});
-ASA ≡ minimizes the total walking distance.
• state7 = ({ASA →}, {});
-ASA → data is propagated through the connection to input of the PR

component.
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• state8 = ({PR ≡}, {PR});
-PR ≡ prints the obtained result.
• state9 = ({}, {}).
-There are no more possibilities of applying either propagation or evalua-

tion.
-The execution of the components involved in the system is finished.
The execution states for the representation from figure 3 (only Level III)

are described in the following. The execution of the components starts from
state6 from the general computation from above.

• state61
= ({BSUL ≡}, {BSUL}); state6

1′
= ({BSUL →}, {});

• state62
= ({CS ≡}, {CS}); state6

2′
= ({CS →}, {});

• state63
= ({DCBS ≡}, {DCBS}); state6

3′
= ({DCBS →}, {});

-if the previous steps were not executed for each ant then the state 61 is
following, else state 64.

• state64
= ({UG ≡}, {UG}); state6

4′
= ({UG →}, {}).

-if the maximum tmax number of iterations are not reached then the state
6 is following, else state 7.

6. Conclusions

Ant algorithms are based on the real world phenomena that ants are able to
find their way to a food source and back to their nest, using the shortest route.
A component based Ant System for the Airport Gate Assignment Problem is
introduced. The way of using the components is shown: the control flow and
the data flow. The model execution steps are also illustrated.

References

[1] O. Babic, D. Teodorovic, V. Tosic, Aircraft stand assignment to minimize walking,
Journal of Transportation Engineering, 110, pp. 55-66, 1984.

[2] A. Barton, A simplified Ant Colony System applied to the Quadratic Assignment Prob-
lem, Technical Report National Research Council of Canada no.47446, 2005.

[3] J. Braaksma, J. Shortreed, Improving airport gate usage with critical path method,
Transportation Engineering Journal of ASCE 97, pp. 187-203, 1971.

[4] Y. Cheng, Network-based simulation of aircraft at gates in airport terminals, Journal
of Transportation Engineering, pp. 188-196, 1998.

[5] Y. Cheng, A rule-based reactive model for the simulation of aircraft on airport gates,
Knowledge-based Systems, 10, pp. 225-236, 1998.

[6] I. Crnkovic, Component-based Software Engineering - New Challenges in Software De-
velopment, Software Focus, 2001.

[7] H. Ding, A. Lim, B. Rodrigues, Y. Zhu, The airport gate assignment problem, hicss,
p.30074b, Proceedings of the 37th Hawaii International Conference on System Sciences
(HICSS’04), pp. 74-81, Track 3, 2004.

[8] M. Dorigo and L. M. Gambardella, Ant Colony System: A cooperative learning ap-
proach to the Traveling Salesman Problem, IEEE Trans. Evol. Comp., 1:5366, 1997.



32 CAMELIA-M. PINTEA AND ANDREEA VESCAN

[9] M. Dorigo, Optimization, Learning and Natural Algorithms (in Italian). Ph.D thesis,
Dipartamento di Elettronica, Politecnico di Milano, Italy, pp.140, 1992.

[10] A. Fanea, S. Motogna, A Formal Model for Component Composition, Proceedings of
the Symposium Zilele Academice Clujene, pp. 160-167, 2004.

[11] A. Haghani, M. Ching Chen, Optimizing gate assignments at airport terminals, Trans-
portation Research, 32(6), pp. 437-454, 1998.

[12] T. Obata, The quadratic assignment problem: Evaluation of exact and heuristic al-
gorithms, Tech. Report TRS-7901, Rensselaer Polytechnic Institute, Troy, New York,
1979.

[13] V. Maniezzo, A. Colorni, M. Dorigo, The Ant System applied to the Quadratic As-
signment Problem, Technical report 94/28, IRIDIA, Université de Bruxelles, Belgium,
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