
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LII, Number 2, 2007

WEB SOURCE CODE POST-PROCESSING: A NEW
APPROACH BASED ON CLASSIC MODELS AND

METHODS

FLORIAN BOIAN

Abstract. The majority of today’s technologies for distributed and web
application development adopted programming languages from the C fam-
ily. To increase the application security, popular such languages like Java,
C#, and PHP have been designed without features for direct memory
manipulation such as pointers, pointer arithmetic, or memory buffer cast-
ing to primitive types similar to the C union construct. The lack of these
features makes much easier the implementation of pre-processing and post-
processing models for source code simplification, verification and testing.
In this paper, a formal approach post-processing mechanism for the web
languages is describe. At the moment, the web developing languages has
not use the post-processing techniques.

Keywords: source to source transformation, abstract programming
schemes, formal methods of source code representation, web applications.

1. Introduction

Source to source code transformation is a wide-spread research direction
[1, 11] that studies methods of source code improvement and optimization
through automatic manipulation. Source code optimization through refactor-
ing [1, 6] and elimination of redundant control structures are such source to
source methods. For instance, sequences like the one in the left side of the
table below, can be automatically transformed in the equivalent form on the
right, provided that the a and t code segments are independently.

13

14 FLORIAN BOIAN

This optimization method can also be applied to sequences of assignments
as shown in the table below. In our example the transformation is conditioned
by the independence between e and b*c [15].

More recent research directions are focused on automatic parallelization
of source code [8]. For example, the code sequence in the left side of the table
below can be transformed in the sequence on the right, provided that a(i) and
b(i) are independent except for the presence of variable i. In the new form,
the two FOR loops in the sequence on the right can be parallelized.

The LOOP-EXIT and LOOP-EXIT-CYCLE [13, 2, 5] schemes revolution-
ized the automatic source to source transformation techniques. Source code
structured using these schemes can be represented easier with formal abstract
constructs and thus it is easier to process automatically. These schemes will
be addressed in more detail in the following sections.

The transformations presented above are implemented in most of today’s
compilers.

Today’s technologies for development of distributed and web application
are based on C-like programming languages without the C features that usu-
ally make the code vulnerable. Thus, popular programming languages such
as Java [7, 12], C# [14], and PHP [10] have been designed without features
for direct memory manipulation such as pointers, pointer arithmetic, or mem-
ory buffer casting to primitive types similar to the C union construct. Under
these circumstances, many of the problems faced by the source to source trans-
formation methods [1, 11] are no longer possible. Consequently, it becomes
much simpler to implement and apply source to source translation for code
improvement, optimization, validation, and testing.

In the following sections we will present and discuss source to source trans-
formations using as abstract concept the LOOP-EXIT schemes. The examples
will be written in one of the C-like programming languages presented above.
The scope of these transformations is to process server side code and detect at

WEB SOURCE CODE POST-PROCESSING 15

an abstract level incoherent code and suggest improvements to the developer.
These transformations can be also used to provide information to support
server side code execution and logging.

2. LOOP-EXIT Schemes, Branches, and Sections

For the purpose of this paper, we consider the LOOP-EXIT schemes as
they are defined in [5]. We denote by A the set of the assignment symbols,
and with T the set of the test symbols.

To each LOOP-EXIT scheme S, a language L(S) can be associated. The
context-free grammar of scheme S is:

G(S) = (N, Σ, P, ∆)
Here N is the set of non-terminals, ∆ is the axiom of grammar G(S). For

each IFk from S there is a nonterminal Ik in N. For each LOOPk there are two
nonterminals Lk and Bk. Σ is the terminal symbol set. Each symbol from A
appears in Σ. For each symbol t from T, the symbols t+ (for true) and t- (for
false), appear in Σ. The product rules are detailed in [5,6,8]. In this section
we will avoid presenting how the products are formal constructed, but rather
will give a practical example in the next section.

In a LOOP-EXIT scheme S, we can define special complete execution
paths. A section from S is a maximal sequence in Σ* where the order of the
symbols is the same as in the static text of S.

More exactly, a word z from Σ* is a section iff exists a word w from L(S)
so that :

(1) w = z, or
(2) w = xz and the last symbol from x appears in the text of S after the

first symbol from z, or
(3) w = zy and the last symbol from z appears in the text of S after the

first symbol from y, or
(4) w = xzy and conditions 2 and 3 are true.
We denote by SECT(S) the set of the sections. A branch in S is a word in

SEC(S) so that only conditions 1 or 2 above are true.
We denote by BRAN(S) the set of the branches from S. The sets SECT(S)

and BRAN(S) can be generated as regular and finite language with prod-
ucts constructed starting with G(S). The complete construction algorithm is
presented in [8].

3. A post-processing example of branch calculation

The following PHP function replaces in the input string special HTML
characters and non-ASCII characters with their corresponding HTML codes.

16 FLORIAN BOIAN

The function returns the ASCII string resulted from processing. The arrays
of special character and their corresponding HTML codes are:

$sa = array(” ” ,”&” ,”\”” ,”<” ,”>” ,”|” , ...);

$sc = array(” ”,”&”,”"”,”<”,”>”,”&brvar;”, ...);

Translating function receives as arguments the input string, and the two
arrays above. The PHP code of the function is:

The transformation is executed using the list of variables and constants
that appear in the source code.

V = {$s, $si, $so, ””, $i, $j, $p, false}

The assignments statements will be grouped in set A and will be denoted
by a1, a2, ..., an. The test statements will form the set T and will be referred
to as t1, t2, ..., tn.

The PHP code above will be first translated in abstract code using LOOP-
EXIT-CYCLE constructs [13,5]. The result of the transformation is in the
following table, the left part.

In the abstract code above, we use EXIT for exiting the inner-most cycle,
and CYCLE for jumping to the beginning of the inner-most cycle.

According to theory, a LOOP-EXIT-CYCLE scheme can be automatically
transformed in LOOP-EXIT scheme by adding additional LOOP-ENDLOOP
statements. The code resulting after these transformations is presented in the
following table, the right part. To simplify the code, we replaced the real
statements with abstract ones.

WEB SOURCE CODE POST-PROCESSING 17

According to [5], the productions of the grammar associated to scheme S
above are:

∆ − > L1
L1 -> I1 a2 L2 a8 L1 | t1+ | a2 B2 a8
B1 -> I1 a2 L2 a8 B1 | ε
I1 -> t1-
L2 -> I2 a3 L3 a7 L2 | t2+
B2 -> I2 a3 L3 a7 B2 | ε
I2 -> t2-
L3 -> L4 L3 | B4 t3+ | I3a4I4 t5+ a5
B3 -> L4 B3 | ε

18 FLORIAN BOIAN

L4 -> I3 a4 I4 I5 a6 L4 | I3 a4 t4+
I3 -> t3-
I4 -> t4-
I5 -> t5-
The language generated by this grammar is:
L(S) = t1+a1 | t1-a2(t2+ | t2-a3(t3+ |(a4t4+ | (a4t4-t5+a5 | a4t4-t5-)*

a7)*)a8)*
The branch set of scheme S is:
BRAN(S) = {t1+a1, t1-a2t2+a8, t1-a2t2-a3t3+a7, t1-a2t2-a3t3-a4t4+,

t1-a2t2-a3t3-a4t4-t5+a5, t1-a2t2-a3t3-a4t4-t5-a6}
The section set of the scheme S is:
SECT(S) = BRAN(S) ∪ {a2t2+a8, a2t2-a3t3+a7, a2t2-a3t3-a4t4+, a2t2-

a3t3-a4t4-t5+a5, a2t2-a3t3-a4t4-t5-a6, t3+a7, t3-a4t4+, t3-a4t4-t5+a5, t3-
a4t4-t5-a6}

4. Conclusions

The example presented in the section above, shows that post-processing
is easily to implement in programming languages lacking direct memory ma-
nipulation features such as PHP. Server side applications are usually written
in Java, C#, or PHP all of which make post-processing simple. Further opti-
mizations of post-processing can be done on syntactically correct source code.
For instance, the post-processing can skip verifying matching parentheses or
brackets, or checking for correct statement closing with ”;”, thus reducing pro-
cessing work. Post-processing is also simplified by the existence of reserved
keywords and variable declaration.

What are the benefits of post-processing? In our view, post-processing in
the sense presented above, can assist the developer, in the following ways:

• A tool that can provide the code flow branches can aid the developer
visualize the code and place proper logging messages in relevant places.
• According to [9], it is possible to perform an automatic analysis of

branches to detect un-initialized variables. Java and C# are able to
signal such cases at compile time, while PHP signals such cases only
at runtime.
• The branch analysis can help the developer take a series of code refac-

toring decisions, that remove redundant operations and simplify the
flow.
• The representation of the real code into an equivalent abstract code

can give the developer a different perspective of the code, which can
lead to positive changes in the code.

WEB SOURCE CODE POST-PROCESSING 19

• Server applications are inherently difficult to debug. Post-processing
can help restructure the code in manners making it clearer and easier
to analyze, leading to less runtime errors.
• Large scale web applications (such as the one presented in [3]) raise

problems more complex than smaller applications. Branch analysis is
mandatory to reduce the problems experienced by the large number of
users accessing the application, and avoid high maintenance costs.
• Web applications working under high load must be optimize the usage

of the resources. The section extraction done by post-processing assist
the developer to organize the information to be saved in the HTTP
session objects [4].

As a future work, we will implement a post-processing mechanism, for the
web languages as PHP, C#, and Java.

References

[1] Arsac J. J., Syntactic Source to Source Transformation and Program Manipulation.
Comm. ACM, 22, no 1, 1979, pp. 43-53.

[2] Baker B.S., Kosaraju S.R., A Comparision of Multilevel Break and Next Statements.
Journal ACM, 26, no 3, 1979, pp 555-566.

[3] Boian F.M. et.al., Distance Learning and Supporting Tools at Babes-Bolyai University
IEEII - Informatics Education inEurope, 29-30 November 2007, Thesaloniki, Greece
(accepted - to appear).

[4] Boian F.M. et.al., Some Formal Approaches for Dynamic Life Session Management
KEPT 2007 Knowledge Engineering Principles and Techniques, Cluj University Press
2007 ISBN978-973-610-556-2, pp. 227-235.

[5] Boian F.M., Loop - Exit Schemes and Grammars; Properties, Flowchartablies. Studia
UBB, Mathematica, XXXI, 3, 1986, pp. 52-57.

[6] Boian F.M., Reducing the Loop - Exit Schemes. Mathematica (Cluj) 28(51), no 1,
1986, pp. 1-7.

[7] Boian F.M., Boian R.F., Tehnologii fundamentale Java pentru aplicaii Web, Editura
Albastr - grupul Microinformatica, Cluj, 2004.

[8] Boian F.M., Frentiu M. Kasa Z., Parallel Execution in Loop - Exit Schemes. UBB,
Faculty of Mathematics and Physics, Research Seminaries, Seminar on Computer Sci-
ence, Preprint no. 9, 1988, pp. 3-16.

[9] Boian F.M., Frentiu M., Program Testing in Loop - Exit Schemes. Studia UBB,
Mathematica, XXXVII, 3, 1992, pp. 21-30.

[10] Converse T. et. al., PHP5 and MySQL Bible. Wiley, 2004.
[11] Greibach S. The Theory of Program Structures: Scheemes, Semantics, Verification.

Springer Verlag, LNCS 1975, 36,1.
[12] Jendrock E. et.al., The JavaTM EE 5 Tutorial, Third Edition: For Sun Java System

Application Server Platform Edition Addison Wesley, 2006.
[13] Moss C.D.S., Structured Programming With LOOP Statements. SIGPLAN Not. 15,

no 1, 1980, pp. 86-94.
[14] Turtschi et.al., C# .NET Web Developer’s Guide. Syngress, 2002.

20 FLORIAN BOIAN

[15] Vancea A., Boian F.M., On the Exactness of a Data Dependence Analysis Method.
Studia UBB, Mathematica, XLIII, 1, 1998, pp. 13-24.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science,
Department of Computer Science, 1 M. Kogălniceanu St., 400084 Cluj-Napoca,
Romania

E-mail address: florin@cs.ubbcluj.ro

