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AXIOMATIZATION OF CREDULOUS REASONING IN
RATIONAL DEFAULT LOGIC

MIHAIELA LUPEA

Abstract. Nonmonotonic reasoning is succesfully formalized by the class of
default logics. In this paper we introduce an axiomatic system for credulous
reasoning in rational default logic. Based on classical sequent calculus and
anti-sequent calculus, an abstract characterization of credulous nonmonotonic
default inference in this variant of default logic is presented.
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1. Introduction

Default logics formalize a particular type of nonmonotonic reasoning, called
default reasoning. These logical systems have special inference rules, called defaults
which permit drawing conclusions in the absence of complete information, using
default assumptions. In default logics a set of facts is extended with new formulas,
using the classical inference rules and the defaults obtaining default extensions.
The elements of extensions are called non-monotonic theorems, or beliefs. The
beliefs are only consistent formulas, not necessarily true and they can be later
invalidated by adding new facts.

The versions (classical([13]), justified ([6]), constrained([14]), rational([11]) of
the default logic, use different meanings of the default assumptions in the reasoning
process.

The computational problems specific to default logics are:
Search problem: computing the extensions of a default theory, is

∑P
2 −complete.

Decision problems:
- Deciding whether a formula belongs to at least one extension of a default

theory - credulous default reasoning, is
∑P

2 −complete.
- Deciding whether a formula belongs to all extensions of a default theory -

skeptical default reasoning, is
∏P

2 −complete.

Due to their very high level of theoretical complexity, caused by the great power
of the inferrential process, the above computational problems can be solved in an
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efficient manner only for particular classes of default theories.

Credulous reasoning versus skeptical reasoning
Accepting alternative possibilities for extending a default theory characterizes

the credulous reasoning. The commonsense reasoning is the human model of rea-
soning, by making default assumptions for overcoming the lack of information.
This type of reasoning belongs to the credoulous perspective of the reasoning.

Skeptical reasoning is imposed in prediction problems, because the nonmono-
tonic consequences cannot be later modified, which means that derived formulas
does not depend on the alternative assumptions made during the reasoning pro-
cess. It is considered irrational to have the possibility to chose one belief or another
one if they are contradictory.

The specific of the problem will decide the appropriate perspective for the non-
monotonic reasoning used to solve the problem.

Related Work
The problem of finding efficient algorithms and building automated proof sys-

tems for default logics was the most approached in the literature [1, 5, 7, 12, 15].
An important theoretical aspect in the formalization of nonmonotonic reasoning

is the study of the inference relations and operations associated to different non-
monotonic formalisms. The specific properties (cumulativity, distribution, cau-
tious monotonicity, proof by cases, absorption, cut) of inference operations for
default logics are presented in the papers [2, 8, 16].

The research in the domain of the axiomatization of nonmonotonic reasoning
formalized by default logics has begun with the paper [3] and continued with [4, 10].
The proposed axiomatic systems are based on sequent and anti-sequent calculi and
characterize the credulous/skeptical default inference in propositional/predicate
classical default logic.

In this paper we propose an abstract characterization of credulous default infer-
ence associated to rational default logic using the credulous rational default sequent
calculus. This axiomatic system combines sequent calculus rules and anti-sequent
calculus rules with reduction rules specific to the aplication of the defaults.

The paper is structured as follows. Section 2 presents theoretical aspects of
classical and rational default logics. Two complementary systems, sequent cal-
culus and anti-sequent calculus for propositional logic, are discussed in Section 3.
In Section 4 we introduce an axiomatic system for credulous reasoning in rational
default logic, based on the sequent calculus. Conclusions and further work are
outlined in Section 5.

2. Default logics

A default theory ( [13]) ∆ = (D,W ) consists of a set W of consistent formulas
of first order logic (the facts) and a set D of default rules. A default has the form
d = α:β1,...,βm

γ , where: α is called prerequisite, β1, . . . , βm are called justifications
and γ is called consequent.
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A default d = α:β1,...,βm

γ can be applied and thus derive γ if α is believed and it
is consistent to assumed β1, . . . , βm(meaning that ¬β1, . . . ,¬βm are not believed).

The set of defaults used in the construction of an extension is called the gener-
ating default set for the considered extension.

The results from [9] show that default theories can be represented by unitary
theories (all the defaults have only one justification, d = α:β

γ ) in such a way that
extensions (classical, justified, constrained, rational) are preserved. In this paper
we will use only unitary default theories based on propositional logic.

The versions (classical, justified, constrained, rational) of default logic try to
provide an appropriate definition of consistency condition for the justifications of
the defaults and thus to obtain many interesting and useful properties for these
logical systems. These logics must coexist because each of them models a specific
type of default reasoning, based on the reasoning context and the semantics of the
assumptions.

Classical default logic was proposed by Reiter[13]. Due to the individual consis-
tency checking of justifications the implicit assumptions are lost when the classical
extensions are constructed.

Justified default logic was introduced by Lukaszewicz[6]. The applicability con-
dition of default rules is strengthen and thus individual inconsistencies between
consequents and justifications are detected, but inconsistencies among justifica-
tions are neglected.

Constrained default logic was developed by Schaub[14]. The consistency con-
dition is a global one and it is based on the observation that in commonsense
reasoning we assume things, we keep track of our assumptions and we verify that
they do not contradict each other.

Rational default logic was introduced in [11] as a version of classical default
logic, for solving the problem of handling disjunctive information. The defaults
with mutually inconsistent justifications are never used together in constructing a
rational default extension.

We denote by Th(U) = {X|U ` X} the classical deductive closure of the set U
of formulas.

The following definitions of classical and rational default extensions show the
applicability conditions of defaults in these two variants of default logic.

Definition 2.1. [13] Let ∆ = (D, W ) be a default theory. For any set S of
formulas, let Γ(S) be the smallest set S′ of formulas such that:

1. W ⊆ S′;
2. Th(S′) = S′;
3. For any α:β

γ ∈ D, if α ∈ S′ and ¬β /∈ S then γ ∈ S′.
A set E of formulas is a classical extension of (D, W ) if and only if Γ(E) = E.
The set GDE

∆ =
{

α:β
γ |α ∈ E and ¬β /∈ E

}
is called the set of the generating

defaults for the classical extension E.
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Definition 2.2. [15] Let ∆ = (D, W ) be a default theory. For any set T of
formulas, let Ψ(T ) be the pair (S′, T ′) of the smallest sets of formulas such that:

1. W ⊆ S′ ⊆ T ′;
2. S′ = Th(S′) and T ′ = Th(T ′);
3. For any α:β

γ ∈ D, if α ∈ S′ and ¬β /∈ T then γ ∈ S′ and β ∧ γ ∈ T ′.
A pair (E, C) of sets of formulas is a rational extension of (D, W ) if and only

if Ψ(C) = (E, C). The set E is the actual rational extension of the default theory
and C is the reasoning context.

The set GD
(E,C)
∆ =

{
α:β
γ |α ∈ E and ¬β /∈ C

}
is called the set of the generating

defaults for the rational extension (E, C).

From the above definitions we can express the applicability condition of the
generating defaults, in terms of derivability and non-derivability in classical logic
as follows:

• α:β
γ is a generating default for a classical extension: E if its prerequisite

is derivable from the actual extension: E ` α and the negation of its
justification is not derivable from the corresponding extension: E 6` ¬β.

• α:β
γ is a generating default for a rational extension: (E, C) if its prerequi-

site is derivable from the actual extension: E ` α and the negation of its
justification is not derivable from the corresponding reasoning context :
C 6` ¬β.

The applicability condition for classical default logic is an individual one and for
rational default logic is a global one, taking in consideration all the justifications
(memorized in the context) used in the reasoning process.

Example 2.1. The default theory (D,W) with W = {F ∨ C} and D ={
d1 = :A

B , d2 = :¬A
C , d3 = :¬B∧¬F

G , d4 = :¬B∧¬C
E

}
has:

- one classical default extension:
E1 = Th({F ∨ C, B,C}) with D1 = {d1, d2} as generating default set.

- two rational default extensions:
1. (E2, C2) =(Th({F ∨ C,B}),Th({F ∨ C,B, A})) generated by D2 = {d1};
2. (E3, C3) = (Th({F ∨ C, C,G}),Th({F ∨ C, G,¬A,¬B ∧ ¬F})) generated

by the set D3 = {d2, d3}.

We remark that :

• F ∨ C, B,C,B ∧ C,B ∨ C, F ∨ C ∨ B, F ∧ C are credulous and also
skeptical classical default consequences;

• F ∨C, B ∨C, F ∨C ∨G, F ∨C ∨B, B ∨G are skeptical rational default
consequences belonging to both rational extensions;

• all skeptical rational consequences are also credulous rational conse-
quences;
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• B, C, G, C ∨ G, C ∧ G, F ∧ C, (F ∨ C) ∧ G are credulous (but not
skeptical) rational default consequences belonging to at least one of the
rational extensions.

3. Sequent and anti-sequent calculi in propositional logic

The sequent calculus, as an improvement of Gentzen natural deduction system,
is an axiomatization of classical logic and also provides a direct and syntactic proof
method. The anti-sequent calculus for propositional logic was introduced in [3] as
a complementary system of sequent calculus.

These two axiomatic systems are used to check the derivability and non-deriva-
bility in propositional logic.

A sequent has the form: U ⇒ V and an anti-sequent has the form U 6 ⇒V ,
where U and V are finite sets of propositional formulas. U is called antecedent
and V is called succedent.

A basic sequent contains the same formula, A, in both antecedent and succedent:
U,A ⇒ V, A or has the form U ⇒ true.

An anti-sequent U 6 ⇒V is called a basic anti-sequent if all the formulas of U
and V are atomic formulas and U ∩ V = ∅.

Semantics
• The sequent U ⇒ V is true if each model of U is also a model for at

least one of the formulas of V .
• U 6 ⇒V is true if there is a model M of U in which all the formulas of V

are false. M is called an anti-model for this anti-sequent.
Axioms

• All basic sequents are true, therefore they are the axioms of sequent
calculus.

• The basic anti-sequents are true and represent the axioms of anti-sequent
system.

The rules of sequent calculus and anti-sequent calculus are presented in TABLE
1 and TABLE 2. These rules can be applied as inference rules: from the premises
(sequents/ anti-sequent above the line) to the conclusion (sequent/anti-sequent
below the line) or backwards from the conclusion to the premises as reduction
rules.

The theorems of soundness and completness for these two systems can be ex-
pressed in an uniform manner as follows:

Theorem 3.1.
A sequent/an anti-sequent is true if and only if it can be reduced to basic

sequents/anti-sequent using the reduction rules.

From TABLE 1 and TABLE 2 we remark that the rules with two premisses
of sequent calculus are splitted into pairs of rules in anti-sequent calculus. Thus
the exhaustive search in sequent calculus becomes nondeterminism in anti-sequent
calculus and the reduction process is a linear one.



106 MIHAIELA LUPEA

Table 1. Sequent and anti-sequent left rules - Introduction into antecedent

Connective Sequent rules Anti-sequent rules

¬ (¬l)
U ⇒ V,A

U,¬A ⇒ V
(¬c

l)
U 6 ⇒V, A

U,¬A 6 ⇒V

∧ (∧l)
U,A, B ⇒ V

U,A ∧B,⇒ V
(∧c

l)
U,A,B 6 ⇒V

U,A ∧B, 6 ⇒V

∨ (∨l)
U,A ⇒ V U,B ⇒ V

U,A ∨B,⇒ V

(∨c
l1)

U,A 6 ⇒V

U,A ∨B 6 ⇒V

(∨c
l2)

U,B 6 ⇒V

U,A ∨B 6 ⇒V

→ (→l)
U ⇒ A, V U,B ⇒ V

U,A → B ⇒ V

(→c
l1)

U 6 ⇒A, V

U,A → B 6 ⇒V

(→c
l2)

U,B 6 ⇒V

U,A → B 6 ⇒V

Table 2. Sequent and anti-sequent right rules - Introduction into succedent

Connective Sequent rules Anti-sequent rules

¬ (¬r)
U,A ⇒ V

U ⇒ V,¬A
(¬c

r)
U,A 6 ⇒V

U 6 ⇒V,¬A

∧ (∧r)
U ⇒ A, V U ⇒ B, V

U ⇒ A ∧B, V

(∧c
r1)

U 6 ⇒A, V

U 6 ⇒A ∧B, V

(∧c
r2)

U 6 ⇒B, V

U 6 ⇒A ∧B, V

∨ (∨r)
U ⇒ A,B, V

U ⇒ A ∨B, V
(∨c

r)
U 6 ⇒A,B, V

U 6 ⇒A ∨B, V

→ (→r)
U,A ⇒ B, V

U ⇒ A → B, V
(→c

r)
U,A 6 ⇒B, V

U 6 ⇒A → B, V

The derivability in propositional logic is expressed in sequent calculus as follows:
U1, U2, . . . , Un ` V 1 ∨ V 2 ∨ . . . ∨ V m if and only if
the sequent U1, U2, . . . , Un ⇒ V 1, V 2, . . . , V m is true,
meaning that from the conjunction of the hypothesis at least one of the formulas

from the succedent can be proved.
The non-derivability in propositional logic is expressed in anti-sequent calculus

as follows:
U1, U2, . . . , Un 6` V 1 ∧ V 2 ∧ . . . ∧ V m if and only if
the anti-sequent U1, U2, . . . , Un 6⇒ V 1, V 2, . . . , V m is true,
meaning that from the conjunction of the hypothesis none of the formulas from

the succedent can be proved.

The following theorem shows the complementarity of these two systems:
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Theorem 3.2.([4])
The anti-sequent U 6 ⇒V is true if and only if the sequent U ⇒ V is not true.

These two axiomatic systems will be used in the following section to check the
applicability conditions of the defaults: the derivability of the prerequisites and
the non-derivability of the justifications.

4. Axiomatization of credulous reasoning in rational default logic

Based on the credulous sequent calculus for classical default logic proposed
in [3], in this section we introduce an abstract characterization of the credulous
nonmonotonic inference in rational default logic. An axiomatic system called cred-
ulous rational default sequent calculus is introduced.

Definition 4.1. Let (D, W ) be a propositional default theory.
A credulous rational default sequent has the syntax :

(Pre, Just); (W,D, Justc) 7−→ U .
U is a set of propositional formulas and is called succedent. The antecedent

contains two components:

• the first component represented by Pre and Just contains constraints
regarding the prerequisites and the justifications of the defaults. The
constraints are expressed using the modalities M (possibility) and L (ne-
cessity).

• the second component is composed of W , D representing the proposi-
tional default theory and Justc containing the justifications assumed to
be true during the reasoning process. In this variant of the default logic
we need Justc in order to check the global applicability condition of the
justifications of the defaults.

Remarks:
A constraint of the form Mα is satisfied by a set E of sentences if ¬α is not

derivable from E, and this can be expressed in anti-sequent calculus as: E 6⇒ ¬α.
A set E of sentences satisfies a constraint of the form Lδ if δ is derivable from

E, expressed as: E ⇒ δ in sequent calculus.

Definition 4.2. The semantics of a credulous rational default sequent:
The credulous rational sequent (Pre, Just); (W,D, Justc) 7−→ U is true if ∨U be-
longs to at least one rational extension of the theory (W,D), that satisfies the con-
straints from Pre and Just and is guided by the reasoning context Th(W ∪Justc).

Definition 4.3. The axiomatic system is Cr = (ΣCr, FCr, ACr, RCr), where:

• ΣCr contains all the symbols used to build propositional formulas, modal
propositional formulas and defaults defined on the underlying language
of the default theory.
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• FCr contains all classical sequents, all classical anti-sequents and all
credulous rational default sequents defined on the underlying language
of the default theory.

• ACr, the set of axioms of this formal system, contains all the basic
sequents and basic anti-sequents defined on the underlying language of
the default theory.

• RCr = reduction rules = {sequent rules, anti− sequent rules}∪
∪{R1, R2, R3, R4, R5, R6, R7, R8}

We propose the following specific reduction rules based on Definition 2.2.

Sequent rules for rational default logic:

(R1)
W ⇒ U

(∅, ∅) ; (W,D, ∅) 7−→ U

(R2)
W ⇒ U

(∅, ∅) ; (W, ∅, Justc) 7−→ U

(R3)
W ⇒ α (Pre, Just ∪ {Mβ}) ; (W ∪ {γ} , D, Justc ∪ {β}) 7−→ U

(Pre, Just); (W,D ∪
{

α:β
γ

}
, Justc) 7−→ U

(R4)
(Pre ∪ {M¬α} , Just) ; (W,D, Justc) 7−→ U

(Pre, Just) ; (W,D ∪
{

α:β
γ

}
, Justc) 7−→ U

(R5)
(Pre, Just ∪ {L¬β}) ; (W,D, Justc) 7−→ U

(Pre, Just) ; (W,D ∪
{

α:β
γ

}
, Justc) 7−→ U

(R6)
W 6 ⇒α (Pre, Just) ; (W, ∅, Justc) 7−→ U

(Pre ∪ {M¬α} , Just) ; (W, ∅, Justc) 7−→ U

(R7)
W ∪ Justc 6 ⇒¬β (∅, Just) ; (W, ∅, Justc) 7−→ U

(∅, Just ∪ {Mβ}) ; (W, ∅, Justc) 7−→ U

(R8)
W ∪ Justc ⇒ ¬β (∅, Just) ; (W, ∅, Justc) 7−→ U

(∅, Just ∪ {L¬β}) ; (W, ∅, Justc) 7−→ U

Remarks:
• The rule R1 shows that default logic extends the classical logic: if the

succedent is derivable from the set of facts (W ), it can be deduced from
the whole default theory also.

• When all the defaults were introduced (as applicable or non-applicable)
and the corresponding constraints were checked (Pre = ∅, Just = ∅)
then the default rational sequent is reduced to a classical one using R2.

• In the reasoning process the introduction of an applicable default, d =
α:β
γ , is formalized by the rule R3.
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-First premise: the derivability of the premise α is checked using
the classical sequent calculus.

-Second premise: the justification β is added to Justc, the conse-
quent γ is added to the set of facts and the corresponding constraint Mβ
for justification is introduced.

• The rules R4 and R5 are used to introduce a default α:β
γ as non-applicable

either by considering its prerequisite as non-derivable (constraint: M¬α)
or its justification inconsistent in the context (constraint: L¬β).

• R6 is used to check the constraints (M) corresponding to the prerequisites
of the non-applicable defaults.

• Applying the rules R7/R8, the constraints (M/L) corresponding to the
justifications are checked in the reasoning context, using anti-sequent/
sequent calculus.

• The order of applying the specific reduction rules is as follows:
– the rules R3, R4 and R5 are used for introducing all the defaults

as applicable or non-applicable until D = ∅;
– R6 is applied to check the constraints corresponding to the prereq-

uisites until Pre = ∅;
– the constraints for justifications are checked using the rules R7 and

R8 until Just = ∅;
– when D = ∅, P re = ∅ and Just = ∅, the default sequent is reduced

to a classical one using R2;
– the classical sequents/anti-sequents are further reduced using the

reduction rules from sequent/anti-sequent calculus.
• From the point of view of the classical default logic the above axiomatic

system is a reformulation of the one proposed in [3], if we eliminate Justc.

Theorem 4.1. The credulous rational default sequent calculus is sound and
complete: a credulous sequent is derivable if and only if it is true (can be reduced
to classical basic sequents and basic anti-sequents).

Proof : The proof is based on the proof from [3] which can be easily adapted
for rational default logic using Definition 2.2.

Consequence:
A formula X is a credulous rational default consequence of the default theory

(D,W ) if the credulous rational sequent (∅, ∅); (W,D, ∅) 7−→ X is true.

Example 4.1. We will show that the formula C ∧ G is a credulous rational
belief of the default theory (D,W ) from Example 2.1.

W = {F ∨ C} and D =
{
d1 = :A

B , d2 = :¬A
C , d3 = :¬B∧¬F

G , d4 = :¬B∧¬C
E

}
.

The reasoning process modeled by the credulous rational default sequent cal-
culus is represented by the following up-side-down binary tree.

S6:F∨C,C,G⇒G S7:F∨C,C,G⇒C−−−−−−−−−−−−−− ∧r
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F∨C,C,G⇒G∧C

−−−−−−−−−−−−−−−− R2
S5 (∅,∅);({F∨C,C,G},∅,{¬A,¬B∧¬F}) 7−→G∧C

−−−−−−−−−−−−−−−−−−−− R7
S4 (∅,{M(¬B∧¬F )});({F∨C,C,G},∅,{¬A,¬B∧¬F}) 7−→G∧C

−−−−−−−−−−−−−−−−−−−−−−−− R7
S3 (∅,{M¬A,M(¬B∧¬F )});({F∨C,C,G},∅,{¬A,¬B∧¬F}) 7−→G∧C

−−−−−−−−−−−−−−−−−−−−−−−−−−− R8
S2 (∅,{M¬A,M(¬B∧¬F ),L¬(¬B∧¬C});({F∨C,C,G},∅,{¬A,¬B∧¬F}) 7−→G∧C

−−−−−−−−−−−−−−−−−−−−−−−−−−−−− R8
(∅,{M¬A,M(¬B∧¬F ),L¬A,L¬(¬B∧¬C});({F∨C,C,G},∅,{¬A,¬B∧¬F}) 7−→G∧C

−−−−−−−−−−−−−−−−−−−−−−−−−−−−− R5
(∅,{M¬A,M(¬B∧¬F ),L¬A});({F∨C,C,G},{d4= :¬B∧¬C

E },{¬A,¬B∧¬F}) 7−→G∧C

−−−−−−−−−−−−−−−−−−−−−−−−−−−−− R5
S1 (∅,{M¬A,M(¬B∧¬F )});({F∨C,C,G},{ :A

B , :¬B∧¬C
E },{¬A,¬B∧¬F}) 7−→G∧C

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− R3
S1 (∅,{M¬A});({F∨C,C},{d1= :A

B ,d3= :¬B∧¬F
G ,d4= :¬B∧¬C

E },{¬A}) 7−→G∧C

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− R3
(∅,∅);({F∨C},{d1= :A

B ,d2= :¬A
C ,d3= :¬B∧¬F

G ,d4= :¬B∧¬C
E },∅) 7−→G∧C

• The initial credulous rational default sequent is:
(∅, ∅); ({F ∨ C} ,

{
:A
B , :¬A

C , :¬B∧¬F
G , :¬B∧¬C

E

}
, ∅) 7−→ G ∧ C

• The defaults d2 and d3 are introduced as applicable defaults using R3.
Their prerequisites are checked in the first premise S1: F ∨ C ⇒ true
which is a classical basic sequent. The corresponding M-constraints for
their justifications are introduced in the second premise.

• Using twice the rule R5, d1 and d4 are considered non-applicable defaults
and thus L-constraints are added to the set of constraints.

• All the defaults were either introduced as applicable or non-applicable
and we used the rules R7 and R8 to check the satisfiability of their
corresponding constraints (L and M) for justifications in the reasoning
context: Th({F ∨ C, G, C} ∪ {¬A,¬B ∧ ¬F}).

• The premises S2 and S3 are classical basic sequents:
S2 : F ∨ C, G, C,¬A,¬B ∧ ¬F ⇒ ¬A,
S3 : F ∨ C, G, C,¬A,¬B ∧ ¬F ⇒ B ∨ C

• The premises S4 and S5 are classical basic anti-sequents:
S4 : F ∨ C, G, C,¬A,¬B ∧ ¬F 6⇒ A,
S5 : F ∨ C, G, C,¬A,¬B ∧ ¬F 6⇒ B ∨ F

• R2 reduces the credulous rational sequent (with D = ∅, Pre = ∅,
Just = ∅), to a classical sequent which can be further reduced to basic
sequents (S6 and S7) using ∧r.

The initial credulous rational default sequent was reduced to basic sequents(S1,
S2,S3,S6,S7) and basic anti-sequents (S4, S5), therefore it is a true sequent and
according to the soundness of our axiomatic system we have that the formula C∧G
is a credulous rational default consequence of the default theory (D,W ).



AXIOMATIZATION OF CREDULOUS REASONING IN RATIONAL DEFAULT LOGIC 111

C ∧ G belongs only to the actual rational extension E3 = Th({F ∨ C, C, G})
generated by D3 = {d2, d3}. The corresponding reasoning context is C3 =
Th({F ∨ C, G,¬A,¬B ∧ ¬F}.

5. Conclusions and further work

In this paper we introduced an axiomatic system for credulous reasoning in
rational default logic. The proposed system, using specific reduction rules, reduces
the nonmonotonic inferential process to a classic inferential process modelled by
the sequent calculus and anti-sequent calculus for propositional logic.

As further work we propose an uniform axiomatization of credulous/skeptical
reasoning, using sequent calculus, for all the versions (classical, justified, con-
strained and rational) of default logic. Also of great practical interest is to add to
these axiomatic systems proof strategies in order to obtain efficient proof methods.

References

[1] Antoniou, G., Courtney, A.P., Ernst, J., Williams, M.A., “A System for Computing
Constrained Default logic Extensions”, Logics in Artificial Intelligence, Lecture Notes in
Artificial Intelligence, Vol.1126, 1996, pp. 237–250.

[2] Antoniou, G., “Nonmonotonic reasoning”, MIT Press, 1998.
[3] Bonatti, P.A,“Sequent Calculi for default and autoepistemic logics””, Proceedings of

TABLEAUX’96, LNAI 1071, pp. 127–142, Springer-Verlag, Berlin, 1996.
[4] Bonatti, P.A., Olivetti, N., “Sequent Calculi for Propositional Nonmonotonic Logics”,

ACM Trans. Comput. Log., 2002, pp. 226–278.
[5] Cholewinski, P., Marek, W., Truszczynski, M., “Default reasoning system DeReS”, Pro-

ceedings of KR-96, Morgan Kaufmann, 1996, pp. 518–528.
[6] Lukasiewicz, W., “Considerations on default logic - an alternative approach”, Computa-

tional Intelligence 4, 1988, pp. 1–16.
[7] Lupea M., “Nonmonotonic reasoning using default logics”, Ph.D.Thesis,”’Babes-Bolyai”’

University, Cluj-Napoca, 2002.
[8] Lupea M., “Nonmonotonic inference operations for default logics”, ECIT - Symposium

on Knowledge-based Systems and Expert Systems, Iasi, Romania, 2002, pp. 1-12.
[9] Marek, W., Truszczynski, M., “Normal form results for default logics”, Non-monotonic

and Inductive logic, LNAI Vol. 659, Springer Verlag, 1993, pp. 153–174.
[10] Milnikel, R.S., “Sequent calculi for skeptical reasoning in predicate default logic and other

nonmonotonic logics”, pp. 1-40, Kluwer, 2004.
[11] Mikitiuk, A., Truszczynski, M., “Rational default logic and disjunctive logic program-

ming”, Logic programming and non-monotonic reasoning, MIT Press, 1993, pp. 283–299.
[12] Nicolas, P., Saubion, F., Stephan, I., “Genetic algorithm for extension search in default

logic”, The 8-th International Workshop on Non-Monotonic Reasoning, 2000.
[13] Reiter, R., “A Logic for Default reasoning”, Artificial Intelligence 13, 1980, pp. 81–132.
[14] Schaub, T.H., “Considerations on default logics”, Ph.D. Thesis, Technischen Hochschule

Darmstadt, Germany, 1992.
[15] Schaub, T.H., “The automation of reasoning with incomplete information”, Springer-

Verlag, Berlin, 1997.
[16] Stalnaker, R.C., “What is a non-monotonic consequence relation”, Fundamenta Informat-

icae, 21, 1995,pp 7–21.
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