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ON EVALUATING SOFTWARE SYSTEMS DESIGN

GABRIELA ŞERBAN AND ISTVÁN GERGELY CZIBULA

Abstract. We have previously introduced in [1, 2] clustering approaches for

identifying refactorings in order to improve the structure of software systems.

For this purpose, we have defined in [2] a semi-metric function in order to

express the dissimilarity between the entities from a software system. In this

paper we aim at giving a theoretical validation for this semi-metric. In other

words, we are focussing on proving that this function illustrates the cohesion

between the entities from a software system and can be used in order to

obtain appropriate refactorings of it.
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1. Introduction

Improving the quality of a software system design is the most important issue
during the evolution of object oriented software systems.

Refactoring is the process of improving the design of software systems. It im-
proves the internal structure of the system, but without altering the external
behavior of the code ([5]).

During the software development cycle, there is a continuous alternance between
adding new tests and functionalities for a software system, and refactoring the code
in order to improve its internal consistency and clarity.

We have previously introduced in [1, 2] clustering approaches for identifying
refactorings in order to improve the structure of software systems. For this pur-
pose, we have defined in [2] a semi-metric function in order to express the dissim-
ilarity between the entities from a software system.
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The main contribution of this paper is to give a theoretical validation for this
semi-metric function, and, consequently, a theoretical validation for the clustering
approaches.

The rest of the paper is structured as follows. The main aspects related to
the clustering approach for systems design improvement (previously introduced in
[1, 2]) are exposed in Section 2.1. The theoretical validation of the semi-metric
distance d used in the clustering approach from [2] is given in Section 3. Section
4 provides an experimental validation of d. Conclusions and further work are
outlined in Section 5.

2. Background

2.1. Clustering approach for refactorings determination. In this section
we briefly describe the clustering approach for improving software systems design
(CARD) previously introduced in [1, 2].

In [1], a software system S is viewed as a set S = {s1, s2, . . . , sn}, where si, 1 ≤
i ≤ n, may be an application class, a method from a class, or an attribute from a
class. CARD consists of three steps:

• Data collection. The existent software system is analyzed in order to
extract from it the relevant entities: classes, methods, attributes and the
existent relationships between them.

• Grouping. The set of entities extracted at the previous step are re-
grouped in clusters using a partitioning algorithm (like kRED algoritm
in [1] or PAMRED algorithm in [2]). The goal of this step is to obtain
an improved structure of the existing software system.

• Refactorings extraction. The newly obtained software structure is
compared with the original software structure in order to provide a list
of refactorings which transform the original structure into an improved
one.

A more detailed description of CARD is given in [1].
At the Grouping step of CARD, the software system S has to be re-grouped.

This re-grouping is represented as a partition K = {K1, K2, . . . , Kv} of S. Ki is
the i-th cluster of K, and an element si from S is referred as an entity. A cluster
Ki from the partition K represents an application class in the new structure of the
software system.

2.2. A semi-metric dissimilarity function. In the clustering approaches from
[1, 2], the objects to be clustered are the entities from the software system S, i.e.,
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O = {s1, s2, . . . , sn}. Our focus is to group similar entities from S in order to
obtain high cohesive groups (clusters).

In [1], we have adapted the generic cohesion measure introduced in [6] that is
connected with the theory of similarity and dissimilarity. In order to express the
dissimilarity degree between any two entities from the software system S, we have
considered the distance d(si, sj) between two entities si and sj as expressed in
Equation (1) ([1]).

(1) d(si, sj) =

{
1− |p(si)∩p(sj)|

|p(si)∪p(sj)| if p(si) ∩ p(sj) 6= ∅
∞ otherwise

,

where, for a given entity e ∈ S, p(e) represents a set of relevant properties of e,
defined as:

• If e is an attribute, then p(e) consists of: the attribute itself, the appli-
cation class where the attribute is defined, and all methods from S that
access the attribute.

• If e is a method, then p(e) consists of: the method itself, the application
class where the method is defined, and all attributes from S accessed by
the method.

• If e is a class, then p(e) consists of: the application class itself, and all
attributes and methods defined in the class.

We have chosen the distance between two entities as expressed in Equation (1)
because it emphasizes the idea of cohesion. As illustrated in [7], “Cohesion refers
to the degree to which module components belong together”.

Based on the definition of distance d given in Equation (1) it can be easily
proved that d is a semi-metric function.

3. Theoretical validation

In this section we are focusing on giving a theoretical validation of the semi-
metric dissimilarity function d described in Subsection 2.2. We aim at proving
that our distance, as defined in Equation (1), highlight the concept of cohesion,
i.e., entities with low distances are cohesive, whereas entities with higher distances
are less cohesive. This theoretical validation of d will give a validation of the
clustering approach from [2], also.

Let us consider that e, α and β are three entities from the software system
S, e 6= α 6= β. In Lemma 1 we give a necessary and sufficient condition in
order to illustrate that entity e is more distant from entity β than from entity α.
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We consider, in the following, the definition of the distance function d given in
Equation (1).

Lemma 1. If e, α and β are three entities from the software system S, and
p(e) ∩ p(α) 6= ∅, then

(2) d(e, α) < d(e, β)

iff

(3)
|p(e) ∩ p(α)|
|p(e)|+ |p(α)| >

|p(e) ∩ p(β)|
|p(e)|+ |p(β)| .

Proof.
Since p(e) ∩ p(α) 6= ∅, we have that

(4) |p(e) ∩ p(α)| > 0.

From (4) we can deduce that:

(5) d(e, α) = 1− |p(e) ∩ p(α)|
|p(e) ∪ p(α)| .

First, we prove implication “⇒” from Lemma 1.
Let us assume that Inequality (2) holds. We have to prove that Inequality (3)

holds, also.
We have two situations in which Inequality (2) holds:

1. d(e, β) = ∞.
This means (from Equation (1)) that entities e and β are unrelated

and have no common relevant properties. Consequently we have that
p(e) ∩ p(β) = ∅. It follows that

(6) |p(e) ∩ p(β)| = 0.

From (6) and (4) we have that Inequality (3) holds. So, implication
“⇒” from Lemma 1 is proved.

2. d(e, β) < 1.
This means (from Equation (1)) that entities e and β are related

and have common relevant properties. Consequently, using (5), it follows
that:
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(7) 1− |p(α) ∩ p(e)|
|p(α) ∪ p(e)| < 1− |p(β) ∩ p(e)|

|p(β) ∪ p(e)| .

From (7) we have that:

(8)
|p(β) ∩ p(e)|
|p(β) ∪ p(e)| <

|p(α) ∩ p(e)|
|p(α) ∪ p(e)| .

If A and B are two sets, it is well known that Equality (9) holds.

(9) |A ∪B| = |A|+ |B| − |A ∩B|.
From (8) and (9) it follows that:

(10) |p(β) ∩ p(e)| · (|p(α)|+ |p(e)| − |p(α) ∩ p(e)|) <

|p(α) ∩ p(e)| · (|p(β)|+ |p(e)| − |p(β) ∩ p(e)|).
Using (10) we have that:

(11) |p(β) ∩ p(e)| · (|p(α)|+ |p(e)|) < |p(α) ∩ p(e)| · (|p(β)|+ |p(e)|).
Inequality (11) implies Inequality (3). So, implication “⇒” from

Lemma 1 is proved.

Now, we prove implication “⇐” from Lemma 1.
Let us assume that Inequality (3) holds. We have to prove that Inequality (2)

holds, also.
We have two situations in which Inequality (3) holds:

1. p(β) ∩ p(e) = ∅.
This means (from Equation (1)) that entities e and β are unrelated

and have no common relevant properties. Consequently we have that
d(e, β) = ∞. It follows that Inequality (2) holds and implication “⇐”
from Lemma 1 is proved.

2. p(β) ∩ p(e) 6= ∅.
This means (from Equation (1)) that entities e and β are related

and have common relevant properties. Consequently it follows that:

(12) d(e, β) = 1− |p(e) ∩ p(β)|
|p(e) ∪ p(β)| .
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From (3) we have that:

(13) |p(α) ∩ p(e)| · (|p(β)|+ |p(e)|) > |p(β) ∩ p(e)| · (|p(α)|+ |p(e)|).
Consequently, we can deduce that:

(14) |p(α) ∩ p(e)| · (|p(β)|+ |p(e)|)− |p(α) ∩ p(e)| · |p(β) ∩ p(e)| >
|p(β) ∩ p(e)| · (|p(α)|+ |p(e)|)− |p(α) ∩ p(e)| · |p(β) ∩ p(e)|.

From (14) we have that:

(15) |p(α) ∩ p(e)| · (|p(β)|+ |p(e)| − |p(β) ∩ p(e)|) >

|p(β) ∩ p(e)| · (|p(α)|+ |p(e)| − |p(α) ∩ p(e)|).

From (15) and (9) it follows that:

(16) |p(α) ∩ p(e)| · |p(β) ∪ p(e)| > |p(β) ∩ p(e)| · |p(α) ∪ p(e)|
Using (16) we can deduce that:

(17)
|p(α) ∩ p(e)|
|p(α) ∪ p(e)| >

|p(β) ∩ p(e)|
|p(β) ∪ p(e)| .

Consequently, we have that:

(18) 1− |p(α) ∩ p(e)|
|p(α) ∪ p(e)| < 1− |p(β) ∩ p(e)|

|p(β) ∪ p(e)| .

From (18), (5) and (12) it follows that Inequality (2) holds and
implication “⇐” from Lemma 1 is proved.

As both implications “⇒” and “⇐” from Lemma 1 were proved, Lemma 1 is
also proved.

Let us consider that α and β are two entities of the software system S that
are situated in different application classes, and e is an entity of S that has to be
disposed in one of the application classes (corresponding to α or β).

In this situation, Inequality (3) from Lemma 1 expresses that the number of
elements that α has in common with e with respect to the total number of elements
from α and e is greater than the number of elements that β has in common with
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e with respect to the total number of elements from β and e. This is very likely
to express that e is more cohesive with α than with β.

Intuitively, condition (3) is very probable a necessary and suficient condition
to indicate that e belongs to the same application class with α and not with β.
This statement cannot be rigurously proved, because the decision that an entity
to be disposed in an application class or another is very complex and cannot
be quantified using rigurous mathematical measures. In practice, the developers
decide wheather or not an entity is disposed into an application class, and the
decision can be a subjective one. Still, in Subsection 3.1 we give an experimental
justification for this statement.

Consequently, we can consider that Proposition 1 is valid.

Proposition 1. If α is an entity of S situated in application class A and β is an
entity of S that is situated in application class B (B 6= A), and e is an entity of
S that has to be disposed in one of the application classes A or B, then e belongs
to A and does not belong to B iff Inequality (3) holds.

From Lemma 1 and Proposition 1 results the mathematical validation of the
semi-metric distance function d, i.e., the facts that:

(1) Entities with low distances are cohesive, whereas entities with higher
distances are less cohesive.

(2) The distances between less cohesive entities are greater than the dis-
tances between cohesive entities.

This theoretical validation of d is given in Lemma 2.

Lemma 2. If α is an entity of S situated in application class A and β is an entity
of S that is situated in application class B (B 6= A), and e is an entity of S that
has to be disposed in one of the application classes A or B, then e belongs to A

and does not belong to B iff d(e, α) < d(e, β).

From Lemma 2 we can conclude that the decision about putting an entity e

from S into an application class or another is based on the distances between e

and the entities from the corresponding application classes.
Consequently, a clustering approach that uses the semi-metric d for expressing

the dissimilarity between the entities from the software system is very appropriate,
and can be used in order to recondition the class structure of a software system,
because it expresses the cohesion between the entities from it.

3.1. Example. Let us consider the software system S given by the Java code
example shown in Figure 1.
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public class Class_A {

public static int attributeA1;

public static int attributeA2;

public static void methodA1(){

attributeA1 = 0;

methodA2();

}

public static void methodA2(){

attributeA2 = 0;

attributeA1 = 0;

}

public static void methodA3(){

attributeA2 = 0;

attributeA1 = 0;

methodA1();

methodA2();

}

}

public class Class_B {

private static int attributeB1;

private static int attributeB2;

public static void methodB1(){

Class_A.attributeA1=0;

Class_A.attributeA2=0;

Class_A.methodA1();

}

public static void methodB2(){

attributeB1=0;

attributeB2=0;

}

public static void methodB3(){

attributeB1=0;

methodB1();

methodB2();

}

}

Figure 1. Code example for Move Method refactoring

Analyzing the code presented in Figure 1, it is obvious that the method methodB1()

has to belong to class A, because it uses features of class A only. This means,
according to Proposition 1, that Inequality (3) holds for e = methodB1(), ∀α ∈
class A, and ∀β ∈ class B.

Analyzing the code from Figure 1 we can observe that all other entities e from
both classes class A and class B, excepting methodB1() are correctly disposed
in their application classes App. This means, according to Proposition 1, that
Inequality (3) holds for e, ∀α ∈ App, and ∀β ∈ C (C ∈ Class(S), C 6= App).

We have verified Proposition 1 ∀e, α, β ∈ S that satisfy its hypothesis and we
have concluded that the proposition is valid.
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For lack of space, we will illustrate in Table 1 the validity of Proposition 1 for
e=methodB1() and in Table 2 the validity of Proposition 1 for e=methodB2().
We aim at illustrating that:

(i) methodB1() is more cohesive with entities from class A, consequently
the Move Method refactoring methodB1() from class B to class A will
be determined by the clustering approach from [2].

(ii) methodB2() is more cohesive with entities from class B, consequently
its position in class B is correct.

Items (i) and (ii) are expressed in Tables 1 and 2 by giving in column Class the
class in which entity e ∈ {methodB1(), methodB2()} should be disposed. The
correct application class in which methodB1() should be disposed is class A and
the correct application class in which methodB2() should be disposed is class B.

The results illustrated in Tables 1 and 2 validate experimentally Proposition 1
for the considered software system, according to the considerations in this subsec-
tion.

4. Experimental Validation

An experimental validation of the semi-metric d (Subsection 2.2) is given in [2].
In [2] we have introduced, based on the semi-metric d, a k-medoids like clustering
algorithm (PAMRED) for identifying refactorings in order to improve the design
of a software system. PAMRED algorithm can be used in the Grouping step of
CARD.

PAMRED algorithm is evaluated on the open source case study JHotDraw ([8])
and a comparison with previous related approaches is also given. This compari-
son illustrates that CARD with PAMRED algorithm is better than other similar
approaches existing in the literature in the field of refactoring.

5. Conclusions and Future Work

We have given in this paper a theoretical validation of the semi-metric function
d previously introduced in [1] and used in the clustering approach introduced in
[2]. In fact, we have validated our previous approach from [2], approach that can
be used to determine refactorings in order to improve the structure of a software
system. As a future work we intend:

• To give theoretical validation for other distance functions that were used
in our previous clustering approaches for refactorings determination ([1]).

• To develop other distance metrics to be used in clustering approaches for
refactorings determination and to give theoretical validations for them.
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e α β |p(e)∩p(α)|
|p(e)|+|p(α)| − |p(e)∩p(β)|

|p(e)|+|p(β)| Class
methodB1() methodA1() methodB2() 0.11111111 Class A
methodB1() methodA1() methodB3() 0.02222222 Class A
methodB1() methodA1() attributeB1() 0.11111111 Class A
methodB1() methodA1() attributeB2() 0.097222224 Class A
methodB1() methodA1() Class B 0.055555552 Class A
methodB1() methodA2() methodB2() 0.11111111 Class A
methodB1() methodA2() methodB3() 0.02222222 Class A
methodB1() methodA2() attributeB1 0.11111111 Class A
methodB1() methodA2() attributeB2 0.097222224 Class A
methodB1() methodA2() Class B 0.055555552 Class A
methodB1() methodA3() methodB2() 0.16161618 Class A
methodB1() methodA3() methodB3() 0.07272728 Class A
methodB1() methodA3() attributeB1 0.16161618 Class A
methodB1() methodA3() attributeB2 0.14772728 Class A
methodB1() methodA3() Class B 0.10606061 Class A
methodB1() methodB2() attributeA1 -0.16161618 Class A
methodB1() methodB2() attributeA2 -0.08888889 Class A
methodB1() methodB2() Class A -0.1388889 Class A
methodB1() methodB3() attributeA1 -0.07272728 Class A
methodB1() methodB3() attributeA2 0.0 Class A
methodB1() methodB3() Class A -0.049999997 Class A
methodB1() attributeA1() attributeB1 0.16161618 Class A
methodB1() attributeA1() attributeB2 0.14772728 Class A
methodB1() attributeA1() Class B 0.10606061 Class A
methodB1() attributeA2() attributeB1 0.08888889 Class A
methodB1() attributeA2() attributeB2 0.075 Class A
methodB1() attributeA2() Class B 0.03333333 Class A
methodB1() attributeB1() Class A -0.1388889 Class A
methodB1() attributeB2() Class A -0.125 Class A
methodB1() Class A Class B 0.08333333 Class A

Table 1. Validation of Proposition 1 for entity e=methodB1().
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