
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LII, Number 1, 2007

AN ANALYSIS OF DISTANCE METRICS FOR CLUSTERING
BASED IMPROVEMENT OF SYSTEMS DESIGN

ISTVÁN GERGELY CZIBULA AND GABRIELA ŞERBAN

Abstract. Clustering is the process of grouping a set of objects into classes
of similar objects. Refactoring is the process of improving the design of
software systems.It improves the internal structure of the system, but without
altering the external behavior of the code ([5]). In [1] we have proposed a
new approach for improving systems design using clustering. The aim of
this paper is to analyze the influence of distance metrics for clustering based
improvement of systems design. We are focussing on identifying the most
suitable distance metric. The study is made on the clustering based approach
developed in [1].

Keywords: software engineering, refactoring, clustering, distance met-
rics.

1. Introduction

The software systems, during their life cycle, are faced with new requirements.
These new requirements imply updates in the software systems structure, that
have to be done quickly, due to tight schedules which appear in real life soft-
ware development process. That is why continuous restructurings of the code are
needed, otherwise the system becomes difficult to understand and change, and
therefore it is often costly to maintain.

Refactoring is a solution adopted by most modern software development method-
ologies (extreme programming and other agile methodologies), in order to keep the
software structure clean and easy to maintain. Thus, refactoring becomes an inte-
gral part of the software development cycle: developers alternate between adding
new tests and functionality and refactoring the code to improve its internal con-
sistency and clarity.

In [5], Fowler defines refactoring as “the process of changing a software system
in such a way that it does not alter the external behavior of the code yet improves
its internal structure. It is a disciplined way to clean up code that minimizes

Received by the editors: January 15, 2007.
2000 Mathematics Subject Classification. 68N99, 62H30.
1998 CR Categories and Descriptors. D.2.7 [Software Engineering]: Distribution,

Maintenance, and Enhancement –Restructuring, reverse engineering, and reengineering; I.5.3
[Computing Methodologies]: Pattern Recognition – Clustering.

45

46 ISTVÁN GERGELY CZIBULA AND GABRIELA ŞERBAN

the chances of introducing bugs”. Refactoring is viewed as a way to improve the
design of the code after it has been written. Software developers have to identify
parts of code having a negative impact on the system’s maintainability, and apply
appropriate refactorings in order to remove the so called “bad-smells” ([10]).

1.1. Related Work. There are various approaches in the literature in the field of
refactoring, but just a few of them use clustering in order to restructure programs.
In [2] a clustering based approach for program restructuring at the functional
level is presented. This approach focuses on automated support for identifying
ill-structured or low cohesive functions. The paper [11] presents a quantitative
approach based on clustering techniques for software architecture restructuring
and reengineering as well for software architecture recovery. It focuses on system
decomposition into subsystems.

We have developed, in [1], a k-means based clustering approach for identifying
refactorings in order to improve the structure of software systems. For this pur-
pose, kRED (k-means for REfactorings Determination) algorithm is introduced.

In this paper we study the influence of distance metrics on the results obtained
by kRED algorithm. We intend to identify the most suitable distance metric using
the open source case study JHotDraw ([14]).

The rest of the paper is structured as follows. The approach (CARD) proposed
in [1] for determining refactorings using a clustering technique is presented in
Section 2. Section 3 provides an experimental evaluation of CARD, based on
different distance metrics and using the open source case study JHotDraw ([14]).
Some conclusions and further work are outlined in Section 4.

2. Refactorings Determination using a Clustering Approach

In this section we briefly describe the clustering approach (CARD), introduced
in [1], that aims at finding adequate refactorings in order to improve the structure
of software systems.

CARD approach consists of three steps:
• Data collection - The existent software system is analyzed in order to

extract from it the relevant entities: classes, methods, attributes and the
existent relationships between them.

• Grouping - The set of entities extracted at the previous step are re-
grouped in clusters using a k-means based clustering algorithm, kRED
([1]). The goal of this step is to obtain an improved structure of the
existing software system.

• Refactorings extraction - The newly obtained software structure is
compared with the original software structure in order to provide a list
of refactorings which transform the original structure into an improved
one.

AN ANALYSIS OF DISTANCE METRICS FOR IMPROVING SYSTEMS DESIGN 47

2.1. Theoretical model. We have introduced in [1] a theoretical model on which
CARD approach is based on. In the following we will briefly describe this model.

Let S = {s1, s2, ..., sn} be a software system, where si, 1 ≤ i ≤ n can be an
application class, a method from a class or an attribute from a class.

We will consider that:
• Class(S) = {C1, C2, . . . , Cl}, Class(S) ⊂ S, is the set of applications

classes in the initial structure of the software system S.
• Each application class Ci (1 ≤ i ≤ l) is a set of methods and attributes,

i.e., Ci = {mi1,mi2, . . . , mipi
, ai1, ai2, . . . , airi

}, 1 ≤ pi ≤ n, 1 ≤ ri ≤ n,
where mij (∀j, 1 ≤ j ≤ pi) are methods and aik (∀k, 1 ≤ k ≤ ri) are
attributes from Ci.

• Meth(S) =
l⋃

i=1

pi⋃

j=1

mij , Meth(S) ⊂ S, is the set of methods from all the

application classes of the software system S.

• Attr(S) =
l⋃

i=1

ri⋃

j=1

aij , Attr(S) ⊂ S, is the set of attributes from the

application classes of the software system S.
Based on the above notations, the software system S is defined as in Equation

(1):

(1) S = Class(S)
⋃

Meth(S)
⋃

Attr(S).

As described above, at the Grouping step of our approach, the software system
S has to be re-grouped. In our view, this re-grouping is represented as a partition
of S.

Definition 1. ([1])Partition of a software system S.
The set K = {K1,K2, ..., Kv} is called a partition of the software system S =
{s1, s2, . . . , sn} iff

• 1 ≤ v ≤ n;
• Ki ⊆ S, Ki 6= ∅,∀i, 1 ≤ i ≤ v;

• S =
v⋃

i=1

Ki and Ki ∩Kj = ∅, ∀i, j, 1 ≤ i, j ≤ v, i 6= j.

In the following, we will refer to Ki as the i-th cluster of K, to K as a set of
clusters and to an element si from S as an entity.

A cluster Ki from the partition K represents an application class in the new
structure of the software system.

2.2. kRED algorithm. In [1], based on the theoretical model described in Sub-
section 2.1, a k-means based clustering algorithm (kRED) is introduced. The

48 ISTVÁN GERGELY CZIBULA AND GABRIELA ŞERBAN

algorithm is used in the Grouping step of CARD, and aims at identifying a par-
tition of a software system S that corresponds to an improved structure of it.

kRED is a vector space model based clustering algorithm, that is used in order
to re-group entities from the software system.

In CARD approach ([1]), the objects to be clustered are the entities from the
software system S, i.e., O = {s1, s2, . . . , sn} and the attribute set is the set of
application classes from the software system S, A = {C1, C2, . . . , Cl}.

The focus is to group similar entities from S in order to obtain high cohesive
groups (clusters), that is why is considered the dissimilarity degree between the
entities and the application classes C from S, ∀C, C ∈ Class(S).

Consequently, each entity si (1 ≤ i ≤ n) from the software system S is char-
acterized by a l-dimensional vector: (si1, si2, . . . , sil), where sij (∀j, 1 ≤ j ≤ l) is
computed as follows ([1]):

(2) sij =

{
− |p(si)∩p(Cj)|
|p(si)∪p(Cj)| if p(si) ∩ p(Cj) 6= ∅

∞ otherwise
,

where, for a given entity e ∈ S, p(e) defines a set of relevant properties of e,
expressed as:

• If e ∈ Attr(S) (e is an attribute) then p(e) consists of: the attribute itself,
the application class where the attribute is defined, and all methods from
Meth(S) that access the attribute.

• If e ∈ Meth(S) (e is a method) then p(e) consists of: the method itself,
the application class where the method is defined, and all attributes from
Attr(S) accessed by the method.

• If e ∈ Class(S) (e is an application class) then p(e) consists of: the
application class itself, and all attributes and methods defined in the
class.

A more detailed justification of the vector space model choice is given in [1].
As in a vector space model based clustering ([8]), we consider the distance

between two entities si and sj from the software system S as a measure of dissim-
ilarity between their corresponding vectors. We will consider in our study three
possible distance metrics between methods:

• Euclidian Distance. The distance between si and sj is expressed as:

(3) dE(si, sj) =

√√√√
l∑

k=1

(sik − sjk)2

• Manhattan Distance. The distance between si and sj is expressed as:

(4) dM (si, sj) =
l∑

k=1

|sik − sjk|

AN ANALYSIS OF DISTANCE METRICS FOR IMPROVING SYSTEMS DESIGN 49

• Cosine Distance. The distance between si and sj is expressed as:

(5) dC(si, sj) =

√
l∑

k=1

s2
ik ·

√
l∑

k=1

s2
jk

l∑
k=1

(sik · sjk)
.

The main idea of kRED algorithm is the following ([1]):

(i) The initial number of clusters is the number l of application classes from
the software system S.

(ii) The initial centroids are chosen as the application classes from S.
(iii) As in the classical k-means approach, the clusters (centroids) are recal-

culated, i.e., each object is assigned to the closest cluster (centroid).
(iv) Step (iii) is repeatedly performed until two consecutive iterations remain

unchanged, or the number of steps performed exceeds the maximum
number of iterations allowed.

In the following we intend to analyze the influence of the distance metrics
described above on the results obtained by kRED algorithm.

3. Experimental Evaluation

For our analysis, we will consider two evaluations, which are described in Sub-
sections 3.1 and 3.2. We will evaluate the results obtained by applying kRED
algorithm for the distance metrics defined in Subsection 2.2.

3.1. Code Refactoring Examples.

3.1.1. Example 1. We aim at studying how the Move Method refactoring is ob-
tained after applying kRED algorithm, for the analyzed distance metrics.

Let us consider the Java code example shown in Figure 1.
Analyzing the code presented in Figure 1, it is obvious that the method methodB1()

has to belong to class A, because it uses features of class A only. Thus, the refac-
toring Move Method should be applied to this method.

We have applied kRED algorithm ([1]), for Euclidian distance and Manhattan
distance, and the Move Method refactoring for methodB1() was determined. The
two obtained clusters are:

• Cluster 1:
{Class A, methodA1(), methodA2(), methodA3(), methodB1(), at-

tributeA1, attributeA2}.
• Cluster 2:
{Class B, methodB2(), methodB3(), attributeB1, attributeB2}.

50 ISTVÁN GERGELY CZIBULA AND GABRIELA ŞERBAN

public class Class_A {
public static int attributeA1;
public static int attributeA2;

public static void methodA1(){
attributeA1 = 0;
methodA2();

}

public static void methodA2(){
attributeA2 = 0;
attributeA1 = 0;

}

public static void methodA3(){
attributeA2 = 0;
attributeA1 = 0;
methodA1();
methodA2();

}
}

public class Class_B {
private static int attributeB1;
private static int attributeB2;

public static void methodB1(){
Class_A.attributeA1=0;
Class_A.attributeA2=0;
Class_A.methodA1();

}

public static void methodB2(){
attributeB1=0;
attributeB2=0;

}

public static void methodB3(){
attributeB1=0;
methodB1();
methodB2();

}
}

Figure 1. Code example for Move Method refactoring

The first cluster corresponds to application class Class A and the second cluster
corresponds to application class Class B in the new structure of the system.

For Cosine distance, the Move Method refactoring for methodB1() is not iden-
tified.

3.1.2. Example 2. We aim to analyze how the Move Attribute refactoring is ob-
tained after applying kRED algorithm, for the studied distance metrics. Let us
consider the Java code example shown in Figure 2.

Analyzing the code presented in Figure 2, it is obvious that the attribute at-

tributeA1 has to belong to class B, because is mostly used by methods from
class B. Thus, the refactoring Move Attribute should be applied to this attribute.

We have applied kRED algorithm for Euclidian distance and Manhattan dis-
tance, and the Move Attribute refactoring for attributeA1 was determined.

For each distance metric, the two obtained clusters are:

AN ANALYSIS OF DISTANCE METRICS FOR IMPROVING SYSTEMS DESIGN 51

public class Class_A {

public static int attributeA2;
public static int attributeA1;

public static void methodA1() {
methodA2();

}

public static void methodA2() {
attributeA2 = 0;
Class_A.attributeA1 = 12;

}

public static void methodA3() {
attributeA2 = 0;
methodA1();
methodA2();

}
}

public class Class_B {

private static int attributeB1;
private static int attributeB2;

public static void methodB1() {
attributeB1 = 0;
Class_A.methodA1();

}

public static void methodB2() {
attributeB1 = 0;
attributeB2 = 0;
Class_A.attributeA1 = 12;

}

public static void methodB3() {
attributeB1 = 0;
methodB1();
methodB2();
Class_A.attributeA1 = 12;

}

public static void methodB4() {
attributeB1 = 0;
methodB2();
Class_A.attributeA1 = 12;

}
}

Figure 2. Code example for Move Attribute refactoring

• Cluster 1:
{Class A, methodA1(), methodA2(), methodA3(), attributeA2}.

• Cluster 2:
{Class B, methodB1(), methodB2(), methodB3(), methodB4(), at-

tributeA1, attributeB1, attributeB2}.
The first cluster corresponds to application class Class A and the second cluster

corresponds to application class Class B in the new structure of the system.
For Cosine distance, the Move Attribute refactoring for attributeA1 is not

identified.

52 ISTVÁN GERGELY CZIBULA AND GABRIELA ŞERBAN

From the examples in Subsection 3.1 we can conclude, experimentally, that
Euclidian distance and Manhattan distance are the most appropriate distance
metrics.

3.2. JHotDraw Case Study. Our second analysis is made on the open source
software JHotDraw, version 5.1 ([14]). It is a Java GUI framework for technical
and structured graphics, developed by Erich Gamma and Thomas Eggenschwiler,
as a design exercise for using design patterns.

The reason for choosing JHotDraw as a case study is that it is well-known as a
good example for the use of design patterns and as a good design.

In order to test the accuracy of CARD approach, two measures ACC and
PREC were introduced in [1]. These measures indicate how accurate are the re-
sults obtained after applying kRED algorithm in comparison to the current design
of JHotDraw. We assume that K = {K1, . . . Kp} is a partition reported after
applying kRED algorithm.

Definition 2. ([1])ACCuracy of a refactoring technique - ACC.
Let T be a refactoring technique.
The accuracy of T with respect to a partition K and the software system S,

denoted by ACC(S,K, T), is defined as:

ACC(S,K, T) =
1
l

l∑

i=1

acc(Ci,K, T).

acc(Ci,K, T) =

∑

j∈MCi

|Ci ∩Kj |
|Ci ∪Kj |

|MCi
| (where MCi = {j| 1 ≤ j ≤ p, |Ci ∩Kj | 6= 0}

is the set of clusters from K that contain elements from the application class Ci),
is the accuracy of T with respect to the application class Ci.

ACC defines the degree to which the partition K is similar to S. Based on
Definition 2, it can be proved that larger values for ACC indicate better partitions
with respect to S, meaning that ACC has to be maximized.

Definition 3. [1] PRECision of a refactoring technique - PREC.
Let T be a refactoring technique.
The precision of methods dicovery in T with respect to a partition K and the

software system S, denoted by PREC(S,K, T), is defined as:

PREC(S,K, T) =
1

|Meth(S)|
∑

m∈Meth(S)

prec(m,K, T).

prec(m,K, T) =
{

1 if m was placed in the same class as in S
0 otherwise ,is the pre-

cision of T with respect to the method m.

AN ANALYSIS OF DISTANCE METRICS FOR IMPROVING SYSTEMS DESIGN 53

PREC(S,K, T) defines the percentage of methods from S that were correctly
discovered by T (we say that a method is correctly discovered if it is placed in
its original application class). Based on Definition 3, it can be proved that larger
values for PRECM indicate better partitions with respect to S, meaning that
PREC has to be maximized.

After applying kRED algorithm for JHotDraw case study, for the considered
distance metrics, we obtain the results described in Table 1.

Distance metric ACC PREC
Euclidian distance 0.9829 0.997

Manhattan distance 0.9721 0.9949
Cosine distance 0.9829 0.997

Table 1. The measures values.

The results from Table 1 show that the results obtained for Euclidian distance
and Cosine distance are the best, because provide the largest values for ACC and
PREC.

As a conclusion, from the results obtained in Subsections 3.1 and 3.2 we can
conclude, experimentally, that Euclidian distance is the most suitable distance
metric to be used in kRED algorithm.

4. Conclusions and Future Work

We have analyzed in this paper the influence of distance metrics for cluster-
ing based improvement of systems design. We have comparatively present the
results obtained by kRED algorithm ([1]) for different distance metrics. In order
to evaluate the obtained results, we have used two quality measures defined in [1].

Based on the obtained results, we can conclude, experimentally, that Euclidian
distance is the most suitable distance metric to be used in kRED algorithm.

Further work can be done in the following directions:
• To apply kRED for other case studies, like JEdit ([3]).
• To use other approaches for clustering, such as hierarchical clustering

([8]), search based clustering ([7]), or genetic clustering ([13]).
• To improve the vector space model used for clustering.

References

[1] Czibula, I.G., Serban, G.: Improving Systems Design Using a Clustering Approach. IJCSNS
International Journal of Computer Science and Network Security, VOL.6, No.12 (2006) 40–
49

[2] Xu, X., Lung, C.H., Zaman, M., Srinivasan, A.: Program Restructuring Through Clustering
Technique. In: 4th IEEE International Workshop on Source Code Analysis and Manipulation
(SCAM 2004), USA (2004) 75–84

[3] jEdit Programmer’s Text Editor: http://www.jedit.org (2002)

54 ISTVÁN GERGELY CZIBULA AND GABRIELA ŞERBAN

[4] Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publish-
ers (2001)

[5] Fowler, M.: Improving the design of existing code. Addison-Wesley, New-York (1999)
[6] Simon, F., Loffler, S., Lewerentz, C.: Distance based cohesion measuring. In Proceedings of

the 2nd European Software Measurement Conference (FESMA) 99, Technologisch Instituut
Amsterdam (1999)

[7] Doval, D., Mancoridis, S., Mitchell, B.S.: Automatic clustering of software systems using
a genetic algorithm. IEEE Proceedings of the 1999 Int. Conf. on Software Tools and Engi-
neering Practice STEP’99 (1999)

[8] Jain, A., Murty, M.N., Flynn, P.: Data clustering: A review. ACM Computing Surveys 31
(1999) 264–323

[9] Bieman, J.M., Kang, B.-K.: Measuring Design-Level Cohesion. In: IEEE Transactions on
Software Engineering 24 No. 2 (1998)

[10] McCormick, H., Malveau, R.: Antipatterns: Refactoring Software, Architectures, and
Projects in Crises. John Wiley and Sons (1998)

[11] Lung, C.H.: Software Architecture Recovery and Restructuring through Clustering Tech-
niques. ISAW3, Orlando, SUA (1998) 101–104

[12] Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs, New
Jersey (1998)

[13] Cole, R.M.: Clustering with genetic algorithms. Master’s thesis, University of Western Aus-
tralia (1998)

[14] JHotDraw Project: http://sourceforge.net/projects/jhotdraw (1997)
[15] Chidamber, S., Kemerer, C.: A metrics suite for object oriented design. Im: IEEE Transac-

tions on Softwareengineering 20 No. 6 (1994) 476–493

Department of Computer Science, Babeş-Bolyai University, 1, M. Kogalniceanu
Street, Cluj-Napoca, Romania,

E-mail address: istvanc@cs.ubbcluj.ro

Department of Computer Science, Babeş-Bolyai University 1, M. Kogalniceanu Street,
Cluj-Napoca, Romania,

E-mail address: gabis@cs.ubbcluj.ro

