
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LII, Number 1, 2007

DEPENDENT TYPES IN MATHEMATICAL THEORY OF
PROGRAMMING

VALERIE NOVITZKÁ, ANITA VERBOVÁ

Abstract. In our approach we consider programming as logical reasoning

over type theory of a given solved problem. In our paper we follow our work
with describing dependent type theory categorically. We introduce dependent

types as families of types indexed by terms and we provide rules of dependent

type calculus. We describe indexing in terms of special functors, fibrations
along display maps over category of type contexts.

1. INTRODUCTION

In our research we consider programming as logical reasoning over type theory
of a given solved problem. We built a category of corresponding type theory
and logical system over the type theory by fibration, i.e. by a special functor [4]
enabling indexing and substitution. In our previous work we presented how to
construct in this manner Church’s type theory (ChTT) [7] and polymorphic type
theory (PTT) [9] categorically and in [8] we built first order logical system over
these type theories.

We started our approach with the concept of many-typed signature Σ = (T, F )
consisting of a finite set T of basic types σ, τ, . . . needed for a solved problem
and a finite family F of operations of the form f : σ1, . . . , σn → τ . From basic
types we can construct Church’s types using constructors for product (σ × τ),
coproduct (σ+τ) and function (σ → τ) types and we defined ChTT by classifying
category Cl(Σ) over Σ consisting of type contexts (variable declarations) Γ = (v :
σ1, . . . , vn : σn) as category objects and tuples of terms (t1, . . . , tm) : Γ → ∆ as
category morphisms, where Γ ` ti : τi denotes a term ti of type τi for i = 1, . . . ,m
with free variables declared in Γ.

Then we constructed PTT over higher-order signature (Σ̄, (Σk)). PTT enables
type variables α, β, . . . and kinds K,L, . . . of types that are enclosed in kind sig-
nature Σ̄ = (K,F) of kinds and functions. For every kind k ∈ K a signature Σk
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consists of Σ̄-terms α1 : K1, . . . , αm : Km ` σ : Type. Then we constructed PTT
by split polymorphic fibration

Cl(Σ̄, (Σk))

Cl(Σ̄)
?

with generic object Type in Cl(Σ̄).
In this paper we follow our approach with defining another types, dependent

types that have been frequently used in computer science. There are several other
approach to capture type dependency, we mention here only contextual categories
[15] and D-categories [1]. We prefer fibrations because they enable to express
indexing and substituting by display maps and we investigate how to describe
DTT categorically in the sense of our previous research.

2. DEPENDENT TYPES

Dependent types are families of types indexed by terms [11]. They offer a
degree of precision in describing program behaviours that goes far beyond the
other typing features. In dependent type theory (DTT) a term variable x : σ can
occur in another type τ(x) : Type. As an example we assume a type IntList of
lists of integers with operations

nil : IntList
append : Int, IntList→ IntList
head : IntList→ Int
tail : IntList→ IntList
isempty : IntList→ Bool

where Int and Bool are types of integers and boolean values, respectively. In DTT
we can refine the type IntList to a family of types IntList(n), the types of lists
with n elements, where n : Nat is a natural number. In such a manner we form
a dependency of the type IntList(n) on the type Nat. To express this depen-
dency between arguments of operations and the types of their results, we consider
e.g. that the type of operation append is a function append : Int, IntList(n) →
IntList(succ(n)), where succ is an operation of type Nat. It is clear that after
appending an element to a list of n elements we get a list of n + 1 elements. So
we capture in types the dependency between the value of an argument n : Nat on
one side and the type IntList(n) and result type IntList(succ(n)) on the other
side. Such types do not exist in ChTT and PTT. They can be considered to be
similar as I-indexed collection X = (Xi)i∈I of sets, which can be written as

i : I ` Xi : Set
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where ` I : Set, i.e. I is an (index) set.
The types of operations for list of integers of length n can be written using a

new constructor, dependent product
∏

as follows:

nil : IntList(0)
append :

∏
n : Nat.(Int, IntList(n))→ IntList(succ(n))

head :
∏
n : Nat.IntList(succ(n))→ Int

tail :
∏
n : Nat.IntList(succ(n))→ IntList(n)

The types of the operations nil, append and tail tell us how many elements are
in their results and that head and tail operations demand non-empty lists as
arguments. Now we do not need the operation isempty because we can see whether
the number of list n is 0. So dependent function types∏

x : σ.τ

are more precise form of function types σ → τ of ChTT. The dependent product
constructor binds a variable x representing the argument of the function so that
we can mention it in the result type τ .

We can build also higher-level list manipulating operations with similarly refined
types. For example, we can define a new operation, e.g. sorting function

sort :
∏

n : Nat.IntList(n)→ IntList(n)

that returns a sorted list of the same length as the input. We can also construct
new terms, e.g.

append3 = λn : Nat.λi : Int.λl.IntList(n).
append(succ(succ(n)) i
(append(succ(n)) i (append(succ(n)) i (append(n i l))

which appends three integers in an integer list of type IntList(n) of n elements
and returns a list of n+ 3 elements, i.e. of type IntList(succ(succ(succ(n)))).

Dependent types are widely used in computer science, e.g. in the description of
digital systems we deal with types of bit vectors of a specific length n : Nat, i.e.
types BoolV ec(n) = Booln that can be represented as n-tuples of boolean con-
stants true, false : Bool (or more conveniently 0, 1 : Bool). The type BoolV ec(n)
depends on n : Nat [4]. Dependent type theory is often called Martin-Löf type the-
ory [6] but his dependent type calculus contains also a type of all types that leads
to Girard’s paradox [2]. Dependent type theory is used not only for foundational
reasoning [3, 5] but also as a basis for proof tools [10].

3. DEPENDENT TYPE CALCULUS

In this section we describe the syntax of dependent type calculus. In our con-
siderations let Σ be a many-typed signature containing basic types. Because in
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dependent types can occur terms, types cannot be introduced separately, so recur-
sion is required. Constructors for dependent types are:

•
∏
x : σ.τ(x), i.e. dependent product of type τ(x), where term variable x

ranges over type σ;
•
∑
x : σ.τ(x), i.e. dependent sum of type τ(x), where term variable x

ranges over type σ;
• Eqσ(x, x′), i.e. the type of σ-equality for variables x, x′ ranging over σ.

Equality types are called identity types.
A dependent product is a collection of functions (f)σ, i.e. indexed by σ, such that
for every i : σ

f(i) : τ [i/x]
is of type τ where occurrences of variable x are replaced by i : σ. A dependent
sum is a set of pairs (i, j), where i : σ and j : [i/x]. The substitution [i/x] in type
τ is typical for dependent type theory. Dependent products generalise exponents
and dependent sums generalise Cartesian products of ChTT.

If x, x′ are variables of the same type, the associated equality type is

Eqσ(x, x′) =
{
{∗} if x = x′

∅ otherwise

where {∗}is singleton.
We use type context Γ = (x1 : σ1, . . . , xn : σ) denoting a finite sequence of

typed variables as in ChTT and PTT but we add the following property: every
type σi+1 is a well-formed type in the previous context Γ′ = (x1 : σ1, . . . , xi : σi),
i.e.

x1 : σ1, . . . , xi : σi ` σi+1 : Type
From this definition it follows that every free variable y : σi+1 must already have
been declared in Γ′, i.e. it must be one of x1, . . . , xi.

Example 1: The well-formed context may be e.g.

Γ = (n : Nat, l : IntList(n))

but
∆ = (n : Nat, z : Array(n,m))

is not well-formed because m is not declared.
�

A sequent of DTT may have one of the following forms:

Γ ` σ : Type (1)
Γ ` t : σ (2)
Γ ` t = s : σ (3)
Γ ` σ = τ : Type (4)
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The sequent (1) denotes dependent type σ in the context Γ, (2) denotes a term
t of type σ in context Γ and (3) expresses equality (conversion) of terms. In (4)
is described the conversion of types, because terms may occur in types. From
categorical point of view types are equal if they are inhabited by the same terms.

Basic rules for dependent type theory are:

Γ ` σ : Type
Γ, x : σ ` x : σ

(proj)
Γ ` t : σ Γ, x : σ,∆ ` τ

Γ,∆[τ/x] ` τ [t/x]
(subst)

Γ, x : σ, y : σ,∆ ` τ

Γ, x : σ,∆[x/y] ` τ [x/y]
(contr)

Γ ` σ : Type Γ ` τ

Γ, x : σ ` τ
(weak)

Γ, x : σ, y : τ,∆ ` τ

Γ, y : τ, x : σ,∆ ` τ
(exchange)

where τ is an arbitrary expression occurable on the right side of sequent and x is
not free in τ . For singleton, i.e. unit type 1 we introduce the following rules

` 1 : Type ` 〈 〉 : 1
Γ ` t : 1

Γ ` t = 〈 〉 : 1
We can form dependent product

∏
, dependent coproduct

∑
and equality type by

the following rules:

Γ, x : σ ` τ : Type
Γ `

∏
x : σ.τ : Type

Γ, x : σ ` τ : Type
Γ `

∑
x : σ.τ : Type

Γ ` σ : Type
Γ, x : σ, x′ : σ ` Eqσ(x, x′) : Type

These type constructors change the context. The variable x : σ becomes bound in∏
x : σ.τ and

∑
x : σ.τ . Term substitution can be defined by

(
∏
x : σ.τ)[s/y] =

∏
x : σ[s/y].τ [s/y]

(
∑
x : σ.τ)[s/y] =

∑
x : σ[s/y].τ [s/y]

Eqσ(x, x′)[s/y] = Eqσ[s/y](x[s/y], x′[s/y])

where in the first two lines we assume that y is different from x and x is not free
in s.
Associated rules for terms are the following:

Γ, x : σ ` t : τ
Γ ` λx : σ.t :

∏
x : σ.τ

(abstraction)

Γ ` t :
∏
x : σ.τ

Γ ` t s : τ [s/x]
(application)

Γ ` σ : Type Γ, x : σ ` τ : Type
Γ, x : σ, y : τ ` 〈x, y〉 :

∑
x : σ.τ

(pairing)
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Γ ` ρ : Type Γ, x : σ, y : τ ` s : ρ
Γ, z :

∑
x : σ.τ ` (unp z as 〈x, y〉 in s) : ρ

(unpairing)

Γ ` σ : Type
Γ, x : σ ` reflσ(x) : Eqσ(x, x)

(reflexivity)

Γ, x : σ, x′ : σ,∆ ` ρ : Type Γ, x : σ,∆[x/x′] ` s : ρ[x/x′]
Γ, x : σ, x′ : σ, z : Eqσ(x, x′),∆ ` (s with x = x′ via z) : ρ

where unp is unpairing operator for sum types similar as in [7], reflσ is reflexivity
combinator for equality and s with x′ = x via z denotes the elimination term for
dependent equality types.

4. ENCLOSING DEPENDENT TYPES IN CATEGORY

We start the categorical investigation of type dependency. We use a distin-
guished class of morphisms, display maps [14] in a category of contexts. A display
map ϕ : (Xi)i∈I → I in set theoretical sense is a mapping from a family (Xi)i∈I of
sets to the set I. Then every set Xi = ϕ−1(i) is indexed by the element i ∈ I. Such
indexing is equivalent with obvious pointwise indexing but it has a big advantage
if considering categories of contexts. Every indexed set Xi can be regarded as a
fibre subcategory over an object i and ϕ displays the (total) category (Xi)i∈I over
a base category I.

Before we construct DTT categorically, we must consider the following fact:
since terms can occur in types we may have conversions between types. But then
it is possible to have conversions between contexts (componentwise). Therefore
we do not consider contexts Γ as objects of classifying category, but equivalence
classes [Γ] of contexts w.r.t. conversion. But for notation simplicity we use in the
following Γ for [Γ].

We assume a fixed dependent type calculus over a signature Σ and we form the
classifying category of contexts ClD(Σ) for DTT that contains:

- as category objects equivalence classes Γ,∆, . . .;
- as category morphisms Γ → ∆ (where ∆ = (y1 : τ1, . . . , ym : τm), yi are free

in
τi) n-tuples (t1, . . . , tn) of terms ti such that

Γ ` ti : τi[t1/y1, . . . , ti−1/yi−1]

We denote this n-tuple of terms by ~t : Γ→ ∆ and call it a context morphism.
Explicit substitution in types is typical for DTT and is not in ChTT and PTT.
These substitutions are performed simultaneously.

Identity Γ → Γ for every context Γ = (x1 : σ1, . . . , xn : σn) is the n-tuple
(x1, . . . , xn) of variables.
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Composition of morphisms

Γ
(t1, . . . , tm)- ∆

(s1, . . . , sk)- Θ

where
Γ = (x1 : σ1, . . . , xn : σn)
∆ = (y1 : τ1, . . . , ym : τm)
Θ = (z1 : ρ1, . . . , zk : ρk)

and
Γ ` ti : τi[t1/y1, . . . , ti−1/yi−1]
∆ ` sj : ρj [s1/z1, . . . , sj−1/zj−1]

is the k-tuple (u1, . . . , uk) : Γ→ Θ with components

uj = sj [~t/~y] = sj [t1/y1, . . . , tm/ym]

for i = 1, . . . ,m and j = 1, . . . , k, that are well-typed, i.e.

Γ ` uj : ρj [s1/z1, . . . , sj−1/zj−1] [~t/~y]

= ρj [s1/z1, . . . , sj−1/zj−1]

To prove associativity is not so simple and the method of the proof can be found
in [14, 12]. Now we can say that ClD(Σ) constructed above is a category.

In ChTT and PTT classifying categories have finite products, empty type con-
text is terminal object and concatenation of contexts yields binary products. In
DTT is easy to see that empty context again yields a terminal object. But con-
catenation of contexts does not yield products, but rather dependent sums.

Example 2: Let (x : σ, y : τ) be a type context of two types, where x may occur
in τ . A context morphism Γ→ (x : σ, y : τ) does not correspond to two morphisms

Γ→ (x : σ) Γ→ (y : τ)

but to the following two morphisms

t : Γ→ (x : σ) s : Γ→ (y : τ [t/x]) (∗)
This dependent pairing property can be described by the existence of pullbacks in
the category ClD(Σ) along display maps:

(Γ, z : ρ)
ϕ→ Γ.

Explicitly, for Γ = (x1 : σ1, . . . , xn : σn) the map ϕ : (Γ, z : ρ) → Γ is the
n-tuple (x1, . . . , xn) of variables in Γ. Display map is some kind of (dependent)
projection because all variables declared in Γ may occur free in ρ. This situation is
illustrated in Figure 1, where display maps are closed under pullback (t, s), where
(t, s) : Γ→ (x : σ, y : τ) is a context morphism and t and s are as in (∗).

�
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Γ

Γ, y : τ [t/x] -

( →x
, s)

-

(x : σ, y : τ)

(t, s)

-

Γ

ϕ

?
-

id

-

(x : σ)

ϕ

?

Figure 1: Display map closed under pullback
We denote by D the collection of display maps

ϕ : (Γ, x : σ)→ Γ

in ClD(Σ) induced by types Γ ` σ : Type in contexts. We construct the arrow
category D→ consisting of

- display maps ϕ as objects and
- pairs of morphisms (u, g) : ϕ → ψ as category morphisms, where u, g are as

in the commutative diagram in Figure 2.

Γ, x : σ
g- ∆, y : τ

Γ

ϕ

?

u
- ∆

ψ

?

Figure 2: Morphisms in D→

Maps in D form a split fibration over ClD(Σ) in Figure 3.
D→

ClD(Σ)

p

?

Figure 3: Dependent types fibration
where p assigns to every display map ϕ : Γ, x : σ → Γ the codomain context,
p(ϕ) = Γ. Substitution functor ϕ∗ : D→Γ → D→Γ,x:σ along a display map ϕ : (Γ, x :
σ)→ Γ in this fibration is functor between corresponding fibre subcategories over
corresponding contexts. It is weakening because it moves a type Γ ` τ : Type to
a bigger context Γ, x : σ ` τ : Type as in the pullback in Figure 4.
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(Γ, x : σ, y : τ) - (Γ, y : τ)

(Γ, x : σ)

ϕ∗(ψ)

?

ϕ
- Γ

ψ

?

Figure 4: Substitution functor ϕ∗

A unit type 1 : τ corresponds to a terminal object functor 1 : ClD(Σ)→ D→ for
the fibration of display maps. This functor is defined by

Γ 7→

 Γ, z : 1
↓
Γ


Then for arbitrary display map ϕ : (Γ, x : σ) → Γ there is precisely one pair of
morphisms

(Γ, x : σ) (Γ, z : 1)

(x1, . . . , xn, 〈 〉)
-

Γ
?

Γ
?

where x1, . . . , xn are variables declared in Γ.
Dependent products

∏
and sums

∑
correspond to the fibration in Figure 2

having Cartesian products and sums along display maps ϕ : (Γ, x : σ) → Γ in
ClD(Σ). This means that dependent products correspond to right adjoints of
weakening functors ϕ∗ along display maps and dependent sums

∑
correspond to

left adjoints along display maps. For dependent products and sums must hold
Beck-Chevalley conditions [4], i.e. for any morphism t : Γ, x : σ → Γ in ClD(Σ)
and every pair of reindexing (substitution) functors ϕ∗, ϕ# : D→Γ → D→Γ,x:σ between
fibres, natural transformation is an identity.

We can say that the codomain fibration in Figure 2 from display maps arrow
category to classifying category characterizes categorically DTT. Every object Γ in
classifying category indexes a fibre subcategory D→Γ . Dependent type constructors
1,
∏

and
∑

are defined by adjoints to substitution functors in total category D→.

5. Conclusion

In this contribution we presented dependent type theory categorically as fi-
bration from arrow category of display maps to classifying category consisting of
dependent type contexts. We can say now that we have integrated categorical
approach for representing ChTT, PTT and DTT. Over these type theories we
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construct logical system also as fibration similarly as in [9], i.e. in the case of DTT
it will be double fibration over classifying category. In the following research we
would like to extend this approach also to higher-order dependent type theory,
based on polymorphic and dependent types.

This work is supported by the grant VEGA 1/2181/05: Mathematical theory of
programming and its application in the methods of stochastic programming
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