STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LI, Number 2, 2006

ON MODEL-DRIVEN DEVELOPMENT FOR WEB
APPLICATIONS

IOAN LAZAR AND DAN COJOCAR

ABSTRACT. The importance of requirements engineering for web systems is
increasing today. Only few methodologies provides a systematic approach for
the specification of web systems through requirements models. New results
that address model transformation from requirements to web system design
were recently obtained in the context of using QVT language.

In this paper we propose an approach for deriving web system design
from requirements models in the context of a model-driven development pro-
cess. We propose an extension of AndroMDA basic development process that
can be suitable also for other model-driven processes. We also extend the
AndroMDA presentation profile for modeling conversational flows for web
applications.

1. INTRODUCTION

Current trends in software development focus on the specification of models and
model transformations. Model-driven development is a successful methodology for
model transformations based on Model Driven Architecture [8]. Model-driven de-
velopment starts at the computational independent level (CIM) with a business
model that capture system requirements. Then the initial CIM model is refined
and a platform independent model (PIM) is obtained. Finally, the code is gener-
ated by transforming the PIM model into a platform specific model (PSM).

In this paper we focus on early steps of model-driven development: obtaining a
PIM model from business requirements. Model transformations from requirements
to web system designs were recently investigated by Koch et al [16]. In order to
capture web process models they used activity diagrams and introduced an UML
profile based on requirements metamodels introduced in [4]. Our approach is
different because we focus on using UML 2.0 state machines to express the process
models in web applications. In this paper we propose to use standard UML and

Received by the editors: November 20, 2006.

2000 Mathematics Subject Classification. 68U07, 68U35.

1998 CR Categories and Descriptors. D.2.1 [Requirements/Specification]: Method-
ologies; D.2.2 [Design Tools and Techniques|: Computer-aided software engineering (CASE),
Object-oriented design methods, State diagrams; D.2.11 [Software Architectures|: Domain-
specific architectures.

102 IOAN LAZAR AND DAN COJOCAR

the extension mechanism provided through stereotypes [10]. The intent is to allow
the modeling process to be performed using any modeling tool that conforms to
UML 2.0 and UML extension mechanism.

State machine models were also used by AndroMDA organization' which devel-
oped several profiles and transformation modules called cartridges. AndroMDA
provides also transformation cartridges for Struts [5] (see [2]) and Java Server
Faces. We also introduce a new profile that extends AndroMDA profile for pre-
sentation layer. This profile allows to model conversational flows in web appli-
cations. Moreover the profile is designed such that to allow transformations for
other frameworks, such as Spring MVC [1] and Spring WebFlow [3].

The remainder of this paper is structured as follows. Section 2 introduces a new
model-driven development process for web applications. A new UML profile for
presentation layer is defined in Section 3. Section 4 discusses how the profile and
the model-driven development process can be used together. Finally, in Section 5
some conclusions and future work are outlined.

2. MODEL-DRIVEN DEVELOPMENT FOR WEB APPLICATIONS

The basic idea of model-driven development is to build platform independent
designs and to generate code for specific platforms. Recently Koch et al [16, 4]
introduced a model-driven approach for web systems. Their approach are struc-
tured around OO-H method [7, 14] and UWE [12, 11, 13, 15]. The PIM models
used by the authors are:

e Process model — defines business processes/workflows using UML activ-
ities. This is the main model from which the content and navigation
models can be derived using Query/View/Transformation [9].

e Content model — contains objects needed for the construction of web
pages content. The classes of this model can be generated from the
process model.

e Navigation model — defines page flow navigation and menus organization.
Also this model can be generated from the process model using QVT
transformations.

e Presentation model — represents pages layout and design.

The basic idea in [16, 4] is to use activity diagrams for describing web business
processes and then to derive other PIM artifacts using QV'T transformation rules.
Our approach is to use state machine diagrams instead of activity diagrams. UML
state machine semantic is more suitable for modeling web user interface than UML
activity diagrams. Other differences between our approach and the approach from
[16, 4] are: (a) the Content model will be derived from signal properties associated
with transitions between states; (b) our approach is suitable for processes that
produces web systems having the modern layer architecture presented in Figure 1.

Thttp://www.andromda.org/

ON MODEL-DRIVEN DEVELOPMENT FOR WEB APPLICATIONS 103

1
presentation|
1 model

T view
Elcontroller] — |

[
s 1 &

service — — — ={value ohject
| L]

[l ‘

domain|_ _ _ _ _ _|

FiGURE 1. Web Application Architecture

The presentation package from Figure 1 corresponds to the presentation layer
and includes web pages, required form models, and controllers. The service pack-
age corresponds to the business layer and contains business services. The domain
package will include entities and business objects. The wvalue object package in-
cludes coarse grained objects used to transfer data between domain and presenta-
tion. As Figure 1 shows, presentation will use only services and value objects.

In this paper we refine the basic MDA process steps presented in Figure 2 (A).
This process was introduced by AndroMDA organization as its basic development
approach. It is a model-driven, agile, test-driven, and iterative development pro-
cess. Each iteration starts with modeling the current iteration scenarios (as PIM)
— agile and iterative approach. Then automatic generation of entities and services
(PSM) follows — model-driven approach. Then, writing unit tests for services
(before implementing the service logic) — test-driven approach, implementing the
service logic, and running units tests follows. Implementing the front-end is the
last step in this development process.

The focus of this paper is on web requirements engineering, that is on the
first step of the model-driven process from Figure 2 (A) — model current iteration
scenarios. This step indicates what is needed to be build for the current iteration.
Emphasizes on this step was also considered in [16]. Figure 2 (B) presents our
extension to the basic model-driven approach from Figure 2 (A). Figure 2 (B)
shows an activity diagram that refines the first step from Figure 2 (A).

Short descriptions of these tasks and their relationships with OpenUP [6] dis-
ciplines are given below:

e Model use cases. The primary focus is to obtain a detailed use case model
for the current iteration scenarios. This step belongs to the OpenUP

104

{ta) Andrompa

model-driven develop-
|ment Process

IOAN LAZAR AND DAN COJOCAR

ﬁﬂ) Model current

iteration scenarios
|- subactivity
|

- " —
[Model current iteration scenarios |
\ /

.
[Model use cases ‘
\ J

it teration]

Model dnmain)

Generate entities & services
/
rMudeI Web processes

1
|
|
|
|
|
|
(write unit tests | |
|
|
|
|
|
|
|
|
|

|
:
e l
|
|
|
|

)
Implement service Ingic)
A

kRun unit (estsf\ |\ Model content) \:Mudel presentation)| |

|

|
|
|
[
|
I i
|\f Model actions | \IMudeI nauigaliun)‘
[E— D
[
[
(Implememlrom-end\ |
/
[
[
[

|

|
f i it |
LMudeI services & entities \

|

|

FIGURE 2. A model-driven development process

requirements discipline. The remaining steps that follows below belongs

to the OpenUP analysis and design discipline.

Model domain. In this step we identify the elements (classes, subsystems,

etc) that collaborate together to provide the required behavior. The

artifact produced after this step is a conceptual/domain model.

Model web processes. In this step we determine how elements collaborate

to realize the scenarios at high level. In order to do that we define web

user interface flows by attaching state machine diagrams to use cases.

This is an analysis step and not a design step. So, at this stage the

state machines do not capture actions needed to be performed in order

to obtain information from the system. The state diagrams express only

views and flows between them.

Refine web processes. The scope of this step is to detail how elements

collaborate to realize the scenarios — that is, a design step. Major de-

sign decisions are made in this stage. Ideally the following steps are

performed, sequentially:

— Model actions. For each use case a controller class is attached. Now

the state machines are refined by adding action states that captures
the required system operations to be performed. The action states

ON MODEL-DRIVEN DEVELOPMENT FOR WEB APPLICATIONS 105

will defer execution to controller operations. The controller opera-
tions will be manually implemented by developers.

— Model content. Presentation form model must be discovered at this
step, that is what data need to be presented in wview states. In or-
der to keep things simple and independent of specific frameworks we
follow the basic idea from [2], that is, we do not model explicitly pre-
sentation form models. Instead we model data propagation between
action states and view states within our state machine diagrams.
At this stage we introduce value objects that will carry data from
domain to presentation. Data propagation between action and view
states are modeled as parameters assigned to the transition events.
PIM to PSM transformation processes need to generate the required
presentation form models from data propagation between states.

— Model navigation. Web pages navigation will be directly gener-
ated from transitions between states. Special considerations require
global transitions and menus.

— Model presentation. This refinement step refers to marking event
parameters sent between action and view states so that the gener-
ated code includes the required page layout and controls.

o Model services and entities. The connection between presentation layer
and service layer is designed at this stage. The required services are
designed and the relationships between each controller and required ser-
vices are established. Moreover, the refinement of domain entities occurs
also.

3. A NEW PRESENTATION PROFILE FOR CONVERSATIONAL FLOWS

We extend AndroMDA profiles for modeling web applications [2] by adding the
concept of a conversational scope to support the execution of use cases that span
multiple use cases [17, Chapter 11]. Many web applications have use cases that do
not normally fit into the request, session, and application scopes defined by the
Java servlet specification. Such applications have use cases that span more than
one page but do not require the longevity of the session.

Spring Web Flow framework [3] treats conversational flows as first level citi-
zens. In this section we introduce new UML stereotypes for modeling conversa-
tional flows in UML. The UML models marked with these stereotypes will allow
transformation tools to extract flow information for specific target platforms like
[3]. These new stereotypes are presented below.

ConversationalFlow: This stereotype can be applied on state machines
and indicates that the contained front end view states represents a single
user conversation. During this user conversation the front end views can

106 IOAN LAZAR AND DAN COJOCAR

==stereotypes=
FrontE icati
==metaclasss=
UseCase — | ==sterectypes=
FrontE ase
==metaciass== “STEI’EEit\pr» ActionState
i ConversationalFlow

+flowOhiect | Class ==sterectype=>=

==stereotypes==
FlowObject

«astereotypess
FrontEndSessionObject

<astereotypess
FrontEndMessage

Fstbrat ==stereatypes= <=metaclass==
FrontEndController A = T it
==metaclass== T ransition
Parameter ==stereotype=>
FrontEndTable ==stereotype==

Fr

-
==metaclassss ==sterectype==
Property FrontEndField

FIGURE 3. A new profile for conversational flow

share some information. The flowObject tag can be used to indicate a
class that encapsulate the conversation shared information.

FlowObject: This stereotype is used to mark classes that represents in-
formation used in conversational flows. When transforming the PIM
model into PSM models the dependency relationships between flow ob-
ject classes and front end controllers classes can be used to generate
convenient methods to access flow object properties within controller
classes.

ActionState: This stereotype can be used to mark server side actions that
belongs to conversational flows. AndroMDA profiles do not provide a
stereotype for server side actions, by default a state not marked with
FrontEndView stereotype being considered a server side action state.

SubflowState: The submachine states within a ConversationalFlow state
machine that span a subflow that is part of the conversation will be
marked using SubflowState.

The other stereotypes presented in Figure 3 comes from AndroMDA profiles
— ValueObject stereotype being part of the common profile and the remaining
stereotypes being part of the presentation profile. The next section refers almost
all these stereotypes.

ON MODEL-DRIVEN DEVELOPMENT FOR WEB APPLICATIONS 107

~Z<FrontEndUiseCasers ﬁ u e Shopplng P ,>
Select Product tems <cextends»

=<edenss
/ “e<FroriEncliseCassss 52 JSlgn In ‘\ - =
<<FrontEndapplicationss j—
Search Product I(ems o Hon reglstered user L'}

e ~eFrontEndLiseCasens
_g., Check Out 2
e B T | __7

T eFromEndliseCases C A
< View Cart Customer ’Gend Immin§<— =]

==includes=
FIGURE 4. Partial use case diagram of Amazon web application

4. MODELING EXAMPLE

In this section we outline the steps presented in Figure 2 (B) on Amazon?

running example (also used as case study in [13]). The following actors interact
with the application: (a) non registered user — search and select products; add
products to the shopping cart, and login (b) customer - inherits from the non
registered user and it is allowed (after logged-in) to start the checkout proces.

The subsections of this section correspond to the tasks presented in Figure 2
(B). Content, navigation, and presentation modeling tasks will not be discussed
below, these tasks being well documented in [2]. We consider that all requirements
outlined above are allocated for the iteration described in the subsections that
follow. Each task includes several marking steps that indicate how to build the
model in order to transform later the model into a PSM model.

4.1. Model use cases task. The purpose of this task is to detail the current
iteration requirements, and the result is a use case model. This task includes the
following marking steps [2]:
Step 1: Mark with FrontEndView stereotype those use cases that require
user interaction.
Step 2: Mark with FrontEndApplication a single use case that will repre-
sent the application entry point.

Figure 4 presents a use case model for our example and the given requirements
above. Search product items, View cart, and Check out use cases are marked with
FrontEndView, and Search product items is also marked with FrontEndApplication
stereotype.

2http: //www.amazon.com

108 IOAN LAZAR AND DAN COJOCAR

<<;mni==g ?Erzﬂy;{z ==Entity=> ()
00 —p| Produ -
o.* - <<_Ermtcy>;n O weErity== (|10 Customer
= E— [g
_n::: oppingCartitem = art 0.4 e
/V s -quantity -creditCare
<<Entity== () [
DD
77777 = <<Entity==()
=cEnfty== Orderttem -deliverybedress| Address
0.# 0.1 |-strest
==Entity==) -zipCode
Order Anvoicedddress _country

FIGURE 5. Domain model

4.2. Model domain task. The primary purpose of this task is to identify the
concepts used to provide the required behavior. At this stage we produce a concep-
tual model presented in Figure 5. This is a common feature in most web modeling
approaches including UWE and OO-H. The marking step of this task is [2]:

Step 3: Apply the Entity stereotype to all domain persistent objects.

When transforming the PIM model, the UML entities will be mapped to entities
of specific object relational mapping frameworks.

4.3. Model web processes. The primary purpose of this task is to describe at
high level the web business processes using UML 2.0 state machines. At this level
of abstraction the state machines will include only the view state. The marking
steps of this task are:

Step 4: For each FrontEndUseCase attach a state machine that describes
the required views (web pages) and the navigation between them.

Step 5: Use UML submachine states in order to model navigation between
use cases.

Step 6: Mark state machines with ConversationalFlow stereotype where
appropriate. Mark where appropriate the submachine states of a Con-
versationalFlow with SubflowState stereotype.

This task is not indicated in [2]. In fact this is an intermediary step, that is, a
requirements analysis step. The resulting state machine diagrams will be refined
during the next design task.

Figure 6 and 7 presents the result of applying the steps 4-6 described above.
Checkout web process is defined as conversational flow, that is all contained views
will share some information (e.g. payment information is used when the invoice is
submitted). Note different types of navigation between Search product items web
process and: (a) Show cart state machine attached to the use case View cart, and
(b) Checkout conversational flow.

ON MODEL-DRIVEN DEVELOPMENT FOR WEB APPLICATIONS

finish s
==FrontEncdyiew== : Checkout
Enter search criteria Eac

suimit back

newy search

==FrontEncViem=:
Wiew Chart

item details ==FrontEndiews==

Browse result details

==FrontEndvieve==
Display search result

add to chart
i Show chart
oo

®
(A) Search product items (B) Show chart

FIGURE 6. Search product items and View cart web processes

<sFrontEndviews> [gy
Sign In =

hiew customer] [elfiil’] [not set of changed]

|" \ [Cnnﬁrm ftems

[4
[not set of changed)
.—> [Set Shipping options H@

==FrorEndiews=
[not set of changed]

[returning customer |

[<=Subflowstate==
: Set Options

o

Add Hew Customer

hew custormer]

[changé} \/‘I‘

[returning customer]

[[«<FrontEncviews»
Set Password

[[=<FrantEnvien==

Place Order Set Payment Options
[[==FrontEnetviznes
Send Invoice
() Checkout ConversationalFlow (B) Set options Subflow

FIGURE 7. Checkout web process

109

Instead on relying on submachines for navigation, the reference documentation
of AndroMDA for Struts [2] indicates the usage of labels attached to the ingoing

transitions of final states.

4.4. Refine Web processes.

Model actions task. The purpose of this task is to determine the system opera-
tions. In order to do that we refine the web processes by adding action states corre-
sponding to server-side action needed to be executed. Because current server-side
frameworks do not follow a standard defined architecture we follow the guideline

110 IOAN LAZAR AND DAN COJOCAR

from [2] and the actions will be encapsulated in front-end controllers. The re-
lationships between front-end controllers and session/conversational flow objects
will be generated according to the targetted platform.

Step 7: For each FrontEndUseCase attach a controller through a tag de-
fined by this stereotype.

Step 8: Optionally, mark each state that represents server-side actions
with ActionState stereotype.

Step 9: Indicate the actions that need to be executed when entering action
state using deferrable trigger property of a UML state. The triggers
should refer a UML CallEvent pointing to a controller operation.

Step 10: For each transition between action and view states use signal
parameters to indicate the data flow between those states. At this step
usually we introduce classes that captures data extracts from domain —
those classes will be marked with ValueObject stereotype.

Step 11: Define session objects and mark their classes with FrontEnd-
Session. Add dependency relationships between controllers and session
object classes.

Step 12: Define objects with conversational scope and link them with con-
versational state machine using the tag flowObject (see Figure 3).

The steps 7-11 are standard steps indicated in [2]. Only the last step is new and
this is needed only for the new introduced conversational flows.

5. CONCLUSIONS

The extension of AndroMDA model-driven development process with empha-
sizes on requirements engineering provides a simple approach close to traditional
requirements engineering for desktop applications. The main advantage of using
such a process consist in the ability to perform requirements engineering tasks at
a high level of abstraction, independent of specific platform.

Currently we are analyzing the possibilities to extend AndroMDA profile in
order to support full mapping to other frameworks such as SpringMVC, and Spring
Web Flow.

REFERENCES

[1] ***. Spring framework reference documentation. Technical report, 2006.
http://static.springframework.org/spring/docs/2.0.x/spring-reference.pdf (06/07/06).

[2] AndroMDA. Business Process Management for Struts Cartridge. 2006.
http://galaxy.andromda.org/docs/andromda-bpm4struts-cartridge/index.html.

[3] Keith Donald and Ervin Vervaet. Spring WebFlow Reference Documentation. 2006.
http://static.springframework.org/spring-webflow/docs/1.0.x/spring-webflow-reference.pdf
(06/07/06).

[4] Maria Jos¢ Escalona and Nora Koch. Metamodeling the requirements of web systems. In
Proc. of the 2nd Int. Conf. on Web Information Systems and Technologies, Setubal, Por-
tugal, April 2006.

ON MODEL-DRIVEN DEVELOPMENT FOR WEB APPLICATIONS 111

new search

l

Prepare product categories] (categories: m*
| productCategories categories : ProductCategoryVo) Jdefer | ProductCateqoryVOIILL oot oo oo

submit
(procuctCategoryld: irt,
searchCriteria String)

Search for products

l searchProductsi productCategoryld: int, searchCriteria: String, products: ProductV'O[]) £ defer J‘i

(products: ProductyO[]) ==FrontEndyieve== fi‘)
>| Browse search result g

(4) Partial detailed Search product items state machine

=<FrartEndCortraller==
SearchitemsController

<« alueOhject==
ProductvV0o

[5]

[9

(10]
(11]
(12]
(13]
14]

(15]

+productCategories categories | ProductCategory'O) =WalueObject==
+searchProcucts(productCategoryld: int, searchCriteria; String, procucts: Productv O[]) ProductCategoryVo
(B) Comtroller class (C) Value ohjecis

FIGURE 8. Detailed web process - action and view states

Apache Foundation. Struts Framework, Version 1.8.5. 2006.
http://struts.apache.org/1.3.5/index.html.

Eclipse Process Framework. OpenUP/Basic. 2006. http://www.eclipse.org/epf/ (06/07/06).
Jaime Gomez and Cristina Cachero. Oo-h method: Extending uml to model web interfaces.
In Information Modeling for Internet Applicaions, pages 144-173. Idea Group Publishing,
2002.

Object Management Group. MDA Guide Version 1.0.1. 2003.
http://www.omg.org/docs/omg/03-06-01.pdf (06/07/06).

Object Management Group. MOF 2.0 Query/Views/Transformations RFP. 2004.
http://www.omg.org/cgi-bin/apps/doc?ad/02-04-10.pdf (06/07/06).

Object Management Group. UML 2.0 Superstructure. 2004. http://www.omg.org/cgi-
bin/apps/doc?formal/05-07-04.pdf (06/07/06).

Alexander Knapp, Nora Koch, and Gefei Zhang. Modeling the behavior of web applications
with argouwe. In Lecture Notes in Computer Science, pages 624—626. Springer Verlag, 2005.
Nora Koch and Andreas Kraus. The expressive power of uml-based web engineering. In
Second Int. Workshop on Web-oriented Software Technology, 2002.

Nora Koch and Andreas Kraus. Integration of business processes in web application models.
Journal of Web Engineering, 1(1):22-49, 2002.

Nora Koch and Andreas Kraus. Modeling web business processes with oo-h and uwe. In
Third Int. Workshop on Web Oiented Software Technology, 2003.

Nora Koch and Andreas Kraus. Towards a common metamodel for the development of
web applications. In Second Int. Conference on Web Engineering, pages 497-506. Springer
Verlag, 2003.

112 IOAN LAZAR AND DAN COJOCAR

[16] Nora Koch, Gefei Zhang, and Mar’ia Jos‘e Escalona. Model transformations from require-
ments to web system design. In Proc. of the 6th Int. Conf. on Web Engineering, pages
281-288. ACM Press, 2006.

[17] Seth Ladd and Keith Donald. Ezpert Spring MVC and Web Flows. Apress, 2006.

E-mail address: ilazar@cs.ubbcluj.ro
E-mail address: dan@cs.ubbcluj.ro

BABES-BOLYAI UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, 400084 M.
KOGALNICEANU 1, CLUJ-NAPOCA, ROMANIA

