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SEQUENT CALCULUS IN COMPUTING DEFAULT
EXTENSIONS

MIHAIELA LUPEA

Abstract. Justified and constrained default logics are the versions of default
logic that have the property of semi-monotonicity. Based on this property, in
this paper we present an iterative approach of the problem of computing the
justified and constrained extensions of a propositional default theory. The
sequent calculus and its complementary system, the antisequent calculus, are
used to check the cautious applicability condition for defaults.
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1. Introduction

The nonmonotonic reasoning is an important part of human reasoning and rep-
resents the process of drawing conclusions from incomplete information. Adding
new facts may later invalidate these conclusions which are only plausible, not nec-
essarily true. Default logics (classical, justified, constrained, rational) formalize
default reasoning, a special case of nonmonotonic reasoning. These logical systems
overcome the lack of information by making default assumption about a situation.
The defaults are nonmonotonic inference rules used to model laws which are true
with a few exceptions.

A default theory ([8]) ∆ = (D,W) consists of a set W (the facts) of consistent
formulas of first order logic and a set D of default rules. W represents absolute
(sometimes incomplete) knowledge about the world while D represents defeasible
knowledge.

A default has the form d = α:β1,...,βm

γ , where: α is called prerequisite, β1, . . . , βm

are called justifications and γ is called consequent.
A default d = α:β1,...,βm

γ can be applied and thus derive γ if α is deductible
(derivable) and it is consistent to assume β1, . . . , βm (meaning that ¬β1, . . . ,¬βm

can not be derived).
Default extensions contain all the formulas obtained from the set of facts using

the classical inference rules and the defaults. The elements of extensions are called
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nonmonotonic theorems (beliefs). The set of defaults used in the construction of
an extension is called the generating default set for the considered extension.

The versions (classical([8]), justified ([4]), constrained([9]), rational([7]) of de-
fault logic, by different applicability conditions, try to provide an appropriate def-
inition of consistency condition for the justifications of the defaults, and thus to
obtain many interesting and useful properties for these logics: existence of exten-
sions, semi-monotonicity, commitment to assumptions, cumulativity, regularity.

In the literature there were developed several methods to solve the problem of
computing extensions of the versions of default logic, using different approaches.

In the paper [3], a relaxed stratification of a default theory is the primary search-
space pruning technique for computing the classical extensions. The semantic
tableaux method is adapted to be used as a general or local prover.

Exten([1]) is a system that computes classical, justified and constrained exten-
sions, based on an operational approach and uses pruning techniques for search
tree.

Semantic tableaux method is used in [11] to compute classical extensions for
a decidable subset of default logic. An uniform approach, based on a modified
version of propositional semantic tableaux method, of computing constrained and
rational default is presented in [5].

In paper [10], default reasoning is integrated into existing model elimination in
order to solve the query-answering problem for constrained and cumulative default
logics.

Based on the semi-monotonicity property of justified and constrained default
logics, and their relationship, in this paper we propose an iterative approach for
generating these two types of default extensions. The sequent calculus and an-
tisequent calculus, as proof systems, are used to check the cautious applicability
condition for defaults.

The paper is structured as follows. In section 2 two complementary proof
systems for propositional logic, sequent calculus and anti-sequent calculus, are
described. Section 3 presents the main aspects of justified and constrained default
logics. Section 4 explains our approach, introducing the theoretical model for
computing justified and constrained extensions. Conclusions and future work are
outlined in Section 5.

2. Sequent calculus and anti-sequent calculus in propositional
logic

This section presents two complementary systems: the sequent calculus and
the anti-sequent calculus, used to check the derivability and non-derivability in
propositional logic.

The sequent calculus method, as an improvement of Gentzen natural deduction
system, is a direct and syntactic proof method.
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A sequent has the form: U ⇒ V , where U and V are finite sets of propositional
formulas. U is called antecedent and V is called succedent.

A basic sequent contains the same formula, A, in both antecedent and succedent:
U,A ⇒ V, A;

Semantics: The sequent U ⇒ V is true if each model of U is also a model for
at least one of the formulas of V . All basic sequents are true, therefore they are
the axioms of sequent calculus.

The inference rules of sequent calculus are presented in TABLE 1.
This proof method consists in reducing an initial sequent, by successive appli-

cations of sequent inference rules, in order to obtain basic sequents.

Table 1. Sequent rules

connective Introduction into Introduction into
antecedent succedent

¬ (¬l) U⇒V,A
U,¬A⇒V (¬r) U,A⇒V

U⇒V,¬A

∧ (∧l) U,A,B⇒V
U,A∧B,⇒V (∧r) U⇒A,V U⇒B,V

U⇒A∧B,V

∨ (∨l) U,A⇒V U,B⇒V
U,A∨B,⇒V (∨r) U⇒A,B,V

U⇒A∨B,V

→ (→l) U⇒A,V U,B⇒V
U,A→B⇒V (→r) U,A⇒B,V

U⇒A→B,V

The derivability from propositional logic is expressed in sequent calculus as
follows: U1, U2, . . . , Un 7−→ V 1 ∨ V 2 ∨ . . . ∨ V m if and only if the sequent
U1, U2, . . . , Un ⇒ V 1, V 2, . . . , V m is true, meaning that from the conjunction
of hypothesis at least one of the formulas from succedent can be proved.

The anti-sequent calculus for propositional logic was introduced in [2] as the
complementary system of sequent calculus.

An anti-sequent has the form U 6 ⇒V , where U, V are finite sets of propositional
formulas.

Semantics: U 6 ⇒V is true if there is a model M of U in which all the formulas
of V are false, and M is an anti-model for this anti-sequent.

An anti-sequent U 6 ⇒V is called a basic anti-sequent if all the formulas of U
and V are atomic formulas and U ∩ V = ∅. The basic anti-sequents are true and
represent the axioms of this system.

The non-derivability from propositional logic is expressed in anti-sequent calcu-
lus as follows: U1, U2, . . . , Un 67−→ V 1∧V 2∧. . .∧V m if and only if the anti-sequent
U1, U2, . . . , Un ⇒ V 1, V 2, . . . , V m is true, meaning that from the conjunction of
hypothesis none of the formulas from succedent can be proved.
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TABLE 2 contains the inference rules of anti-sequent calculus, used to reduce
an initial anti-sequent to an axiom that represents a partial anti-model for the
initial anti-sequent.

Table 2. Anti-sequent rules

Introduction into antecedent Introduction into consequent
(¬c

l) U 6⇒V,A
U,¬A 6⇒V (¬c

r) U,A 6⇒V
U 6⇒V,¬A

(∧c
l) U,A,B 6⇒V

U,A∧B, 6⇒V (∧c
r1) U 6⇒A,V

U 6⇒A∧B,V (∧c
r2) U 6⇒B,V

U 6⇒A∧B,V

(∨c
l1) U,A6⇒V

U,A∨B 6⇒V (∨c
l2) U,B 6⇒V

U,A∨B 6⇒V (∨c
r) U 6⇒A,B,V

U 6⇒A∨B,V

(→c
l1) U 6⇒A,V

U,A→B 6⇒V (→c
l2) U,B 6⇒V

U,A→B 6⇒V (→c
r) U,A 6⇒B,V

U 6⇒A→B,V

We remark that the difference between TABLE 1 and TABLE 2 consists in
splitting the rules with two premisses from sequent calculus into pairs of rules
in anti-sequent calculus. Thus the exhaustive search in sequent calculus becomes
nondeterminism in anti-sequent calculus and the reduction process is a linear one.

The following theorem shows the complementarity of these two proof systems:

Theorem 2.1 ([2])
The anti-sequent U 6 ⇒V is true if and only if the sequent U ⇒ V is not true.

3. Justified and Constrained default logics

Justified default logic was introduced by Lukaszewicz ([4]). This version of
default logic solves the problem of inconsistencies consequents-justifications us-
ing a support set, but the inconsistencies justifications-justifications are still not
detected. The existence of justified extensions is guaranted and the property of
semi-monotonicity is satisfied.

In constrained default logic ([9]), the assumptions (stored in a set of constraints)
from the reasoning process are used to express a global consistency condition for
justifications. This logic is strongly regular, semi-monotonic, commits to assump-
tions and guarantees the existence of constrained extensions.

The results from [6] show that default theories can be represented by unitary
theories (all the defaults have only one justification, d = α:β

γ ) in such a way that
extensions (classical, justified, constrained, rational) are preserved. In this paper
we will use only unitary default theories and the following notations:

Prereq(d) = α, Justif(d) = β, Conseq(d) = γ, Prereq(D) =
⋃

d∈D Prereq(d),
Justif(D) =

⋃
d∈D Justif(d), Conseq(D) =

⋃
d∈D Conseq(d),

Th(X) = {A|X ` A} the classical deductive closure of the set X of formulas.
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All versions of default logics were introduced using fixed-point operators. The
definitions below are the original ones for justified and constrained default logics.

Definition 3.1([4])
Let ∆ = (D,W) be a default theory. For any pair (S, U) of sets of formulas, let

Γ1(S, U) and Γ2(S,U) be the smallest sets of formulas which satisfy:
a) W ⊆ Γ1(S, U);
b) Γ1(S, U) = Th(Γ1(S,U));
c) For any α:β

γ , if α ∈ Γ1(S, U) and ∀η ∈ U ∪ {β}, S ∪ {γ} 67−→ ¬η then
γ ∈ Γ1(S, U) and β ∈ Γ2(S, U).

A pair (E, J) of sets of formulas is a justified extension of ∆ if and only if
E = Γ1(E, J) and J = Γ2(E, J).

E is the actual extension and J is the support set. The applicatibility con-
dition c) permits the detection of inconsistencies consequents-justifications, but
the support set may be inconsistent, meaning that defaults with contradictory
justifications were applied.

Definition 3.2([9])
Let ∆ = (D,W) be a default theory. For any set T of formulas, let Υ(T ) be

the pair of the smallest sets (S′, T ′) of formulas which satisfy:
a) W ⊆ S′ ⊆ T ′;
b) S′ = Th(S′) and T ′ = Th(T ′);
c) For any α:β

γ , if α ∈ S′ and T ∪ {γ} 67−→ ¬β then γ ∈ S′ and β, γ ∈ T ′.
A pair (E, C) of sets of formulas is a constrained extension of ∆ if and only if

Υ(C) = (E,C).

The actual extension (E ) is embedded in a consistent context (C ) containing
the facts, the consequents and all the justifications assumed to be true in the
construction of E.

These definitions are difficult to be used in the process of constructing extensions
and thus equivalent characterizations of extensions were proposed.

The semi-monotonicity property is defined as follows:

Definition 3.3
Let ∆ = (D,W) be a default theory and D′ be a set of defaults such that

D ⊆ D′. If (E, C) is a default extension of ∆, then there is a default extension
(E′, C ′) of the theory (D′,W), with E ⊆ E′ and C ⊆ C ′.

Justified and constrained default logics are both semi-monotonic ([9]), mean-
ing that new defaults can augment but never destroy previous extensions. The
nonmonotonicity in this two versions of default logic is caused by addition of new
facts which can invalidate formulas already derived.
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The semi-monotonicity property guarantees the existence of justified and con-
strained extensions. In the worst case (Th(W), ∅) is the only justified extension and
(Th(W), Th(W)) is the only constrained extension of the default theory (D,W).

Another advantage of this property is from a computational point of view.
These two types of default extensions are constructible in a truly iterative way by
applying one applicable default rule after another.

The relationship between justified and constrained logics is expressed by the
following results from ([5]):

- A constrained extension is a justified extension, satisfying the property that
all justifications of the applied defaults are consistent with the actual extension.

- Each constrained extension is included in at least one justified extension.

4. Computing justified and constrained default extensions

This section presents an uniform operational approach for computing justified
and constrained extensions. It is inspired from the operational semantics ([5])
which characterizes these two types of extensions. Due to the smi-monotonicity
we define the problem of computing the justified and constrained extension as an
iterative process, applying the applicable defaults one by one.

Definition 4.1
Let ∆ = (D,W) be a default theory.

• A triple of the form 〈Ep, Jp, Dp〉 is called a j-structure if Dp ⊆ D, Ep =
W ∪ Conseq(Dp), and Jp = Justif(Dp).

• A triple of the form 〈Ep, Cp, Dp〉 is called a c-structure if Dp ⊆ D,
Ep = W ∪ Conseq(Dp), and Cp = W ∪ Conseq(Dp) ∪ Justif(Dp).

The applicability conditions for defaults in justified and constrained default
logics can be expressed by the following definition:

Definition 4.2
• The default d = α:β

γ is j-applicable with respect to 〈Ep, Jp, Dp〉 if:
– the sequent Ep ⇒ α is true;
– ∀η ∈ Jp ∪ {β} the anti-sequent Ep, γ 6⇒ ¬η is true.

• The default d is c-applicable with respect to 〈Ep, Cp, Dp〉 if:
– the sequent Ep ⇒ α is true;
– the anti-sequent Cp, γ 6⇒ ¬β is true.

The sequent calculus is used to express the derivability of the prerequisite, while
the fact that the justification is believed (its negation is not derivable) is expressed
using the anti-sequent calculus.

Definition 4.3
To a default d = α:β

γ we assign a mapping dj from the set of j-structures into
the set of j-structures as follows:
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• dj(〈Ep, Jp, Dp〉) = 〈Ep ∪ {γ} , Jp ∪ {β} , Dp ∪ {d}〉 if d is j-applicable wrt
〈Ep, Jp, Dp〉;

• dj(〈Ep, Jp, Dp〉) = 〈Ep, Jp, Dp〉 otherwise.

To a default d = α:β
γ we assign a mapping dc from the set of c-structures into

the set of c-structures as follows:

• dj(〈Ep, Cp, Dp〉) = 〈Ep ∪ {γ} , Cp ∪ {β, γ} , Dp ∪ {d}〉 if d is c-applicable
wrt 〈Ep, Jp, Dp〉;

• dj(〈Ep, Cp, Dp〉) = 〈Ep, Cp, Dp〉 otherwise.

These mappings model a caution application of the defaults, meaning that once
a default is applied it can not lead to inconsistency further in the process of building
an extension.

Definition 4.4
Let 〈Ep, Jp, Dp〉 be a j-structure, 〈Ep, Cp, Dp〉 be a c-structure and D be a set

of defaults.

• 〈Ep, Jp, Dp〉 is j-stable wrt D if dj(〈Ep, Jp, Dp〉) = 〈Ep, Jp, Dp〉 ,∀d ∈ D
• 〈Ep, Cp, Dp〉 is c-stable wrt D if dc(〈Ep, Cp, Dp〉) = 〈Ep, Cp, Dp〉 , ∀d ∈ D

A stable structure characterizes the end of the reasoning process in which were
used all the applicable defaults.

Definition 4.5
A j-structure

〈
En

p , Jn
p , Dn

p

〉
is j-accesible from the j-structure

〈
E0

p , J0
p , D0

p

〉
if

there is a sequence of defaults (d1, d2, . . . , dn) and a sequence o j-structures
(
〈
E0

p , J0
p , D0

p

〉
,
〈
E1

p , J1
p , D1

p

〉
, . . . ,

〈
En

p , Jn
p , Dn

p

〉
) such that dj

i (
〈
Ei−1

p , J i−1
p , Di−1

p

〉
)

=
〈
Ei

p, J
i
p, D

i
p

〉
, for i = 1, . . . , n.

Definition 4.6
A c-structure

〈
En

p , Cn
p , Dn

p

〉
is c-accesible from the c-structure

〈
E0

p , C0
p , D0

p

〉
if there is a sequence of defaults (d1, d2, . . . , dn) and a sequence o c-structures
(
〈
E0

p , C0
p , D0

p

〉
,
〈
E1

p , C1
p , D1

p

〉
, . . . ,

〈
En

p , Cn
p , Dn

p

〉
) such that dj

i (
〈
Ei−1

p , Ci−1
p , Di−1

p

〉
)

=
〈
Ei

p, C
i
p, D

i
p

〉
, for i = 1, . . . , n.

If a j-structure 〈Ep, Jp, Dp〉 is j-accessible from (W, ∅, ∅) then it corresponds
to a partial justified extension. If a c-structure 〈Ep, Cp, Dp〉 is c-accessible from
(W,W, ∅) then it corresponds to a partial constrained extension.

Theorem 4.1
Let ∆ = (D,W) be a default theory. The j-structure 〈Ep, Jp, Dp〉 corresponds

to the justified extension (Th(Ep), Jp) of ∆, with Dp as generating default set
if and only if 〈Ep, Jp, Dp〉 is j-stable wrt D and 〈Ep, Jp, Dp〉 is j-accesible from
(W, ∅, ∅).
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Theorem 4.2
Let ∆ = (D,W) be a default theory. The c-structure 〈Ep, Cp, Dp〉 corresponds

to the constrained extension (Th(Ep), Th(Cp)) of ∆, with Dp as generating default
set if and only if 〈Ep, Cp, Dp〉 is c-stable wrt D and 〈Ep, Cp, Dp〉 is c-accesible from
(W,W, ∅).

For lack of space we will not give the proofs of the above theorems.

5. Conclusions and further work

In this paper we defined the problem of computing the justified and constrained
extension as an iterative process. Due to the semi-monotonicity property of these
two versions of default logics, the applicable defaults have been applied one by
one in order to build an extension. The sequent calculus and anti-sequent calculus
proof systems were used to check the applicability conditions for defaults.

As further work we will implement an algorithm based on this approach, using
a top-down techinque and pruning for efficiency, in order to generate all justified
and constrained extensions of a propositional default theory.
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