
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 2, 2006

OPERATIONAL SEMANTICS OF TASK MODELS

ADRIANA TARŢA AND SIMONA MOTOGNA

Abstract. This paper proposes an operational semantic approach for the

task models. Task models are used in the process of user centered software
design to represent the work structure and the sequence of steps needed to

reach a goal. The goal of our approach is to develop inference rules which

will reflect the changes on the presentation aspects of an application when
a certain temporal operator occurs. By using the proposed inferece rule we

will show that when the deductive process is ended the enabled task sets are

determined.

1. Introduction

Today, computers are used in almost every domain of our life. The success or
failure of a software system is given by the support the system gives to its user in
performing their tasks efficiently and with satisfaction. These features of a software
systems are components of a software quality measure, called usability. In order to
obtain a high usability level, a user centered approach in the design of interactive
system should be used. In this paper we will discuss a method used in the design
of interactive system called task-based design. The task-based design relies on
the analysis of the tasks the users perform. The result of the task analysis is
represented by task models. In this paper we will present a formal approach of task
models based on operational semantics [10]. The paper is structured as follows:
Section 2 presents the basic elements of task-based design, Section 3 presents some
introductory notions about operational semantics followed by the presentation
of our approach in describing task models using operational semantics, Section
4 presents few examples of applying operational semantics on some task trees
and Section 5 presents the conclusions of our research and further work on our
approach.

Received by the editors: November 28, 2006.
2000 Mathematics Subject Classification. 68-xx, 68Qxx.
1998 CR Categories and Descriptors. [F.4.1]: Theory of Computation – Mathematical

Logic; [H.5.2 [Information Systems]: Information Interfaces and Presentation – User Interfaces.

81

82 ADRIANA TARŢA AND SIMONA MOTOGNA

2. Task-based design

The first step in task based design of interactive systems is task analysis. Task
analysis is the process of gathering data about tasks people perform and acquiring
a deep understanding of it. The process of structuring data and gaining insight
into the data is called task modeling [14]. Work structure is one of the most
important aspects in task analysis. The design of an interactive system usually
means restructuring the work and removing or adding tasks. Work structure can
be captured in a task decomposition tree [15]. The tree forms a hierarchy where
the high level tasks are found at the top of the tree and the most basic tasks are
at the leaf nodes. In the representations proposed over time ([14], [7]), the tree
are enhanced constructors that indicate time relationship between tasks. In the
work structure model, the root of the tree is a goal with possibly some subgoals.
Connected to goals are tasks and tasks can be connected on the same level by
temporal operators. When designing for usability, the work structure is important
for developing the most appropriate interaction structure and functionality.

Many task analysis methods have been developed and used in the design of
software systems: HTA [1], GOMS [3], TAG [9], MAD [11], most of them using a
textual formal notation. For complex systems, these methods were impossible to
be used. In 1996, a new approach in task based design has been developed, con-
sisting in a method for analysing the groupware work globally, not individually.
This new method has been called GTA (Groupware Task Analysis) [13] and based
on GTA a design method called DUTCH (Designing for Users and Tasks from
Concepts to Handles) [16] has been developed. The task models (trees) developed
using GTA used constructors to specify the time relationships between tasks. For
the average usage, the following time relationships have proved sufficient: Con-
current, Choice, AnyOrder, Succesive and * (iteration) [14]. These constructors
were: SUCC for sequential tasks, PAR for concurrent tasks, CHOICE for alter-
nate task, * for iterative tasks and ANY for independent order tasks [14]. CTT
(ConcurTaskTrees), another approach in task modeling, uses a more formal time
relationship specification using LOTOS (Language Of Temporal Ordering Specifi-
cation) operators [5]. The operators taken from LOTOS are: enabling, disabling,
parallel composition (interleaving and full synchronization), choice, order inde-
pendence and iteration. In the following, we will present the definition of each of
the operators mentioned above. The original definitions are expressed in terms of
processes [2]. For the subject of our paper, we will use the term task instead of
using the term process.

The choice operator - denoted by [] - is defined as follows: if T1 and T2 are
two tasks, then T1[]T2 denotes a task which behaves like T1 or T2.

The interleaving operator - denoted by ||| - if T1 and T2 are two tasks ready
for an action (t1 and t2), then both action orderings (t1 after t2 ot t2 after t1)
are possible.

OPERATIONAL SEMANTICS OF TASK MODELS 83

The synchronization operator - denoted by || - T1 and T2 have to synchronize
on some actions in order to exchange information.

The sequential composition (enabling) operator - denoted by - � - T1 � T2 -
if T1 terminates successfully, then the execution of T2 is enabled.

The disabling operator - denoted by [> - T1 [>T2 - if T2 is started, then T1 is
never performed.

The iteration operator - denoted by ∗ - T1∗ - means that task T1 is iterative.
In the following subsection we will use operational semantics in order to system-

atically derive the actions (subtasks) that a task may perform from the structure
of expression itself. The goal of this approach is to determine the Enabled Task
Sets (ETS) [4], which will lead us to a presentation model of the user interface of
an interactive systems.

3. Operational semantics for temporal operators

Operational semantics has been successfully used in specifying different pro-
gramming languages. The principles can be applied with a few modifications for
our goals.

We will denote the set of temporal operators by O = {[], >>, [>, ||, |||, | = |, ∗}.
The prority order among operators is: choice operator > parallel composition op-
erators (interleaving, synchronization) > disabling operator > order independence
operator> enabling operator [8].

Our aim is that starting from a task tree to obtain in a rigourous way the enabled
tasks sets (tasks which are enabled at the same time) that will correspond to the
user interface of an interactive system. Having the enabled tasks sets, we will able
to determine the widgets of the user interface based on task types. Tasks types can
be: editing, monitoring, selection of a single choice or selection of multiple choices
and control [14]. In the following we will describe our approach in identifying the
enabled tasks sets based on the operational semantics.

We will give the definition of a task tree starting from the definition of the tree
concept [6]. A task tree has a root node (representing the goal of the task perfor-
mance). Each node is either a leaf (a unit task) or an internal node (representing
a subtask). An internal node has one or more children nodes and is called the
parent of its child nodes. All children of the same node are siblings. Every two
siblings are related by a temporal operator belonging to the set O.

We will use Haskell-like data definitions to define abstract syntax formally:

Op=[](ST,ST) | ||(ST,ST)| [> (ST,ST)| >> (ST,ST)| ||| (ST,ST)| *(ST)

A task sequence may be defined as
ST → T op T | T op ST | T
T → task
op →� | [] | ‖ | 9 | [> |∗.

84 ADRIANA TARŢA AND SIMONA MOTOGNA

The state of the abstract machine for task trees has a stack of tasks and an
enabled task sets (ETS) collection denoted by E where the enabled tasks sets
generated by the execution of the abstract machine are saved.

The structured operators semantics for task models defines a relation ”_” which
means ”is transformed by a single execution step into” [12]. We define this relation
by means of inference rules. An expression like ”Jt1KE _ JskipKE” can be read
as ”execution of task t1 with the enabled task sets E means execution of skip (no
action) with the enabled task sets E”. An expression like ”Jt1KE _ Jt′1KE ′” can
be read as ”execution of task t1 with the enabled task sets E means execution of
subtask t′1 with the enabled task sets E ′”.

3.1. Enable operator semantics. When two tasks are related by the enabling
operator it means that after the completion of the first task, the second task will
start. This means that the two tasks will belong to different enabled tasks sets.
This aspect will be described by the changes that will affect the enabled task sets
E . In the following we will describe the inference rules for the enable operator:

Jt1KE _ Jt′1KE
(ER1)

Jt1 � t2KE _ Jt′1; t2K E

The first rule refers to the situation when the task t1 is evaluated to one of its
subtasks t′1. In this case, the expression Jt1 � t2KE is evaluated to the expression
Jt′1; t2K E . In this case the ETS remains unchanged, because further processing
must be done.

Jt1KE _ JskipKE + {t1}
(ER2)

Jt1 � t2KE _ Jskip; t2K E + {t1}

The second rule handles the situation when the enabling task t1 is already
accomplished (the next step in its performance is skip (no action)). In this
case, the expression Jt1 � t2KE is evaluated to the sequential execution of skip
followed by the execution of the enabled task t2. The ETS will be enriched with
the accomplished task t1.

(ER3)
Jskip � t2KE _ Jt2K E

The third rule describes the way the expression Jskip � t2KE is evaluated. In
this situation, only task t2 must be executed and the ETS remains unchanged.

(ER4)
Jt1 � skipKE _ Jt1K E

OPERATIONAL SEMANTICS OF TASK MODELS 85

The fourth rule describes the situation when the enabling task is a final task (it
is the last child of a node). In this case the expression Jt1 � skipK is evaluated
to the execution of the enabling task.

3.2. Choice operator semantics. If two tasks t1 and t2 are related by the choice
operator, the performance of the task depends on users option. That is why we
have added o in the middle of the operator’s notation, representing the users’
option. We make the convention that if o evaluates to the constant 1, then the
first task is selected for execution (see ChR1). If o evaluates to 2, then the second
task will be selected for execution (see ChR3). In order to be able to select one
of two options, both tasks should be available at the same time. This aspect is
reflected on the updates which affect the store by adding both tasks to the ETS.
In the following we will present the inference rules for the choice operator:

JoKE _ 1 E Jt1KE _ JskipKE ′
(ChR1)

Jt1 [o] t2KE _ JskipK E ′ + {t1, t2}

JoKE _ 1 E Jt1KE _ Jt′1KE ′
(ChR2)

Jt1 [o] t2KE _ Jt′1K E ′ + {t′1, t2}

JoKE _ 2 E Jt2KE _ JskipKE ′
(ChR3)

Jt1 [o] t2KE _ JskipK E ′ + {t1, t2}

JoKE _ 2 E Jt2KE _ Jt′2KE ′
(ChR4)

Jt1 [o] t2KE _ Jt′2K E ′ + {t1, t′2}

3.3. Disable operator semantics. If t1 and t2 are two tasks and t2 is a disabling
task, this means that when t2 performance starts t1 is disabled no matter which is
the execution state of t1 (i.e. t2 is able to suspend the execution of any subtask of
t1). That is why the rule does not have an hypothesis part of the inference rule.
This means that t2 must belong to every enabled tasks set generated by t1. We
have described this fact by updating the ETS E by adding the disabling task to
each set of the ETS:

(DR)
Jt1 [> t2K E _ Jskip; t2K E ′

where E ′ = {{l1, . . . , ln, t2}}, ∀{l1, . . . , ln} ⊂ E.

86 ADRIANA TARŢA AND SIMONA MOTOGNA

3.4. Parallel composition operator semantics - Pure interleaving. The
pure interleaving operator relating the task T1 and T2 expresses nothing but any
interleaving of the actions of T1 with the actions of T2:

(ConcR1)
Jskip 9 skipK E _ JskipK E

The first rule expresses the fact that by interleaving no actions (skip), the result
will be also skip.

Jt1KE _ Jt′1KE ′
(ConcR2)

Jt1 9 skipK M _ Jt′1K E ′

Jt2KE _ Jt′2KE ′
(ConcR3)

Jskip 9 t2K M _ Jt′2K E ′

The rules ConcR2 and ConcR3 describe the situation when one of the inter-
leaving tasks is evaluated to one of its children and the ETS is changed to E ′, then
interleaving the task with skip (no action), the result will be the execution of the
child task and the ETS will be E ′.

Jt1KE _ Jt′1KE ′
(ConcR4)

Jt1 9 t2K E _ Jt′1 9 t2K E ′

Jt2KE _ Jt′2KE ′
(ConcR5)

Jt1 9 t2K E _ Jt1 9 t′2K E ′

Jt1KE _ Jt′1KE ′

Jt2KE _ Jt′2KE ′′
(ConcR6)

Jt1 9 t2K E _ Jt′1 9 t′2K ER

where ER is the enabled tasks set formed as follows: ∀{X} ⊂ E ′,∀{Y } ⊂ E ′′, ER =
{{X, Y }}

The last three rules ConcR4, ConcR5 and ConcR6 describe the situation when
the execution of one (or both) of the interleaving tasks is evaluated to the execution
of one of its children with changes on the ETS (E ′)(i.e. Jt1KE _ Jt′1KE ′). In
this case, the result of the evaluation of interleaving of the two tasks will be
evaluated to the interleaving of the child task(s) with implications on the ETS
(i.e. Jt1 9 t2K E _ Jt′1 9 t2K E ′).

OPERATIONAL SEMANTICS OF TASK MODELS 87

3.5. Parallel composition operator semantics - Full Synchronization. The
rules for the parallel composition operator are very similar to those for the inter-
leaving operator and will be presented in the following:

(SyncR1)
Jsync t1 || sync t2K E _ Jt1 || t2K E

Jt2KE _ Jt′2KE ′
(SyncR2)

Jskip || sync t2K E _ Jt2K E ′

Jt1KE _ Jt′1KE ′
(SyncR3)

Jsync t1 || skipK E _ Jt1K E ′

Jt1KE _ Jt′1KE ′
(SyncR4)

Jt1 || sync t2K E _ Jt′1 || sync t2K E ′

Jt2KE _ Jt′2KE ′
(SyncR5)

Jsync t1 || t2K E _ Jsync t1 || t′2K E ′

Jt1KE _ Jt′1KE ′

Jt2KE _ Jt′2KE ′′
(SyncR6)

Jsync t1 || sync t2K E _ Jt′1 || t′2K ER

where ER is the enabled tasks set formed as follows: ∀{X} ⊂ E ′,∀{Y } ⊂ E ′′, ER =
{{X, Y }}

3.6. Order independence operator semantics. The expression t1 | = | t2
means that t1 and t2 can be executed in any order, but both tasks must be executed
(for example filling in the user name and the password in a login form). In terms
of enabled task sets, both tasks will belong to the same enabled tasks set, fact
illustrated by adding both tasks to the same enabled tasks set of ETS. The rules
will be presented in the following:

Jt1KE _ Jt′1KE
(OIR1)

Jt1 | = | t2K E _ Jt′1; t2K E + {t1, t2}

Jt2KE _ Jt′2K E
(OIR2)

Jt1 | = | t2KE _ Jt1; t′2K E + {t2, t1}
The first two rules describe the situation when one of the two tasks is evaluated
to the execution of one of its children (let’s say t1 is evaluated to the execution
of t′1). In this case, the expression Jt1 | = | t2K E is evaluated to the expression

88 ADRIANA TARŢA AND SIMONA MOTOGNA

Jt′1; t2K E + {t1, t2} which means the execution of t′1 followed by the execution of
t2.

The following rules (OIR3 and OIR4) regard the situation when one of the
tasks is skip and the other is evaluated to the execution of one of its subtasks. In
this case the expression evaluates to the execution of the subtask and the ETS is
updated by adding the parent task.

Jt2KE _ Jt′2K E
(OIR3)

Jskip | = | t2KE _ Jt′2K E + {t2}

Jt1KE _ Jt′1K E
(OIR4)

Jt1 | = | skipKE _ Jt′1K E + {t1}

3.7. Iteration operator semantics. The iteration operator associated to a task
means that the task is iterative (after completing an execution, the task can start
its execution again).

The first inference rule say that if a task execution is accomplished (Jt1KE _
JskipKE) then task’s iteration is evaluated to skip and the ETS is updated by
adding a new set containing the iterative task:

Jt1KE _ JskipKE
(ItR1)

Jt∗1K E _ JskipK E + {t1}

If the iterative task is not accomplished (one of its subtasks is running), then
the iteration of the task is evaluated to the iteration of its child and the ETS is
updated by adding the parent task.

Jt1KE _ Jt′1KE + {t1}
(ItR2)

Jt∗1K E _ Jt′∗1 K E + {t1}

3.8. Complementary rules. In addition to the rules associated to each operator
we will need some rules for sequential execution. The need for these rules appears
when composed temporal operators should be handled. The evaluation of such
kind of expressions is reduced to the evaluation of some sequential tasks. The
rules are presented in the following:

(SR1)
Jskip; tK E _ JtK E

The rule SR1 says that skip (no action) followed by the execution of the task t
is evaluated to the execution of task t and the ETS is not affected.

OPERATIONAL SEMANTICS OF TASK MODELS 89

Jt1KE _ Jt′1KE ′
(SR2)

Jt1; t2K E _ Jt′1; t2K E ′

If the task t1 is evaluated to the execution of one of its children t′1, the expres-
sion Jt1; t2K E is evaluated to the execution of the child task (t′1) followed by the
execution of t2. The ETS is updated with the changes introduced by the execution
of t′1.

t1 _ skip
(ExR1)

Jt1K E _ JskipK E + {t1}

The rule ExR1 is used when t1 is a leaf in the task tree and its execution is
completed (is transformed in skip). In this case the expression Jt1K E where E is
the ETS is evaluated to skip and the ETS is updated with a new task (t1).

4. Examples

In the following we will present some examples of generating enabled tasks sets
using the operational semantics. The first example is related to a task tree using
the enabling operator. The task tree is presented in Figure 1. We have to evaluate
the expression JB � D � EKE which is the frontier of the tree. Using the rule

Figure 1. Task tree with enabling operators

ER2 we will make the first step in our deduction as follows.

JBKE _ JskipKE + {B}
JB � D � EKE _ Jskip; D � EK E + {B}

Let us denote E ′ = E + {B}. By applying the rule SR1 we will evaluate
Jskip; D � EKE ′.

Jskip; D � EK E ′ _ JD � EK E ′

Now, using ER2 we have:

90 ADRIANA TARŢA AND SIMONA MOTOGNA

Figure 2. Task tree with choice operator

JDKE ′ _ JskipKE ′ + {D}
JD � EKE ′ _ Jskip; EK E ′ + {D}

Let us denote E ′′ = E ′ + {D}. Using The rule SR1, Jskip;EKE ′′ is evaluated to
JEK E ′′.

Jskip;EKE ′′ _ JEK E ′′

Now, we will apply ExR1 to evaluate JEK E ′′ and we will obtain:

E _ skip

JEKE ′′ _ JskipK E ′′ + {E}
At the end of the deduction process the final content of the store will be com-

posed by three enabled tasks sets: {B}, {D}, and {E}.
The second example handles a task tree using the choice operator. We will

consider that the user selects the first option from the available ones (see Figure
2). We have to evaluate the expression JB � E[o]F � DKE . Using ER2 for the
task B we will obtain:

JBKE _ JskipK E + {B}
JB � E [o] F � DKE _ Jskip; E [o] F � DK E + {B}

Let us denote E ′ = E + {B}. Applying ChR1 and ER2we will obtain:

JoKE ′ _ 1 E ′ E _ skip

JE [o] F KE ′ _ JskipKE ′ + {E,F}
JE [o] F � DKE ′ _ Jskip;DKE ′ + {E,F}

Let us denote E ′′ = E ′ + {E,F}. We will apply SR1 and the next step in the
deductive process will be:

Jskip;DKE ′′ _ JDKE ′′

Applying ExR1 we will obtain:
D _ skip

JDKE ′′ _ JskipKE ′′ + {D}

OPERATIONAL SEMANTICS OF TASK MODELS 91

At the end of the deductive process the content of the ETS is E ′′ + {D} which
means {E,F}, {D}, {B}.

The following example illustrates the process of building ETS when the task
model contains parallel (interleaving) tasks. The expression we must evaluate is
D � E[]F 9 G[]H(see Figure 3).

Figure 3. Task tree using the pure interleaving operator

JDKE _ JskipKE + {D}
JD � E [o1] F 9 G [o2] HKE _ Jskip; E [o1] F 9 G [o2] HK E + {D}

Let us denote E ′ = E + {D}. We will evaluate Jskip; E [o1] F 9 G [o2] HK E ′

using SR1.

Jskip; E [o1] F 9 G [o2] HKE ′ _ JE [o1] F 9 G [o2] HK E ′

Applying SR1 and ChR1 we will obtain:

Jo1K E ′ E _ skip

JE [o1] F K E ′ _ JskipKE ′ + {E,F}
JE [o1] F 9 G [o2] HK E ′ _ Jskip 9 G [o2] HK E ′ + {E,F}

Let us denote E ′′ = E ′ + {E,F}. Using ConcR3 and ChR2 the result will be:

Jo2K E ′′ _ 2 E ′′ + {G, H} G _ skip

JG [o2] HKE ′′ _ JskipKE ′′ + {G, H}
Jskip 9 G [o2] HK E ′′ _ Jskip 9 skipK ER

The final ETS will be ER = {{D,G, H}, {E,F,G,H}.

5. Conclusions and further work

In this article we have presented a new approach of task models based on
operational semantics. We have given a definition of task trees and we have written
inference rules for the temporal operators used to describe task models. We have
captured on the inference rules aspects regarding the updates that take place at

92 ADRIANA TARŢA AND SIMONA MOTOGNA

the enabled tasks sets collection (E). The process of building the presentation
model will be based on the obtained ETS collection.

As future research directions our goals are: to build the presentation model
based on the enabled tasks sets obtained using operational semantics and to extend
our approach in order to build a dialog model also (transitions between states)
starting from task models.

References

[1] J. Annett and K.D. Duncan. Task analysis and training design. Journal of Occupational

Psychology, 41:211–221, 1967.
[2] T. Bolognesi and E. Brinksma. Introduction to the iso specification language lotos. Comput.

Netw. ISDN Syst., 14(1):25–59, 1987.

[3] S. Card, T. Moran, and A. Newell. The Psychology of Human-Computer Interaction.
Cariere. Lawrence Erlbaum Associates, 1983.

[4] L. Marucci, F. Paterno, and C. Santoro. Multiple and Cross-Platform User Interfaces: En-
gineering and Application Frameworks, chapter Supporting Interactions with Heterogeneous

Platforms Through User and Task Models, pages 217–238. H. Javahery and A. Seffah (eds.),

2003.
[5] G. Mori, F. Paternò, and C. Santoro. CTTE: Support for developing and analyzing task

models for interactive system design. IEEE Transactions on Software Engineering, 28(9):1–

17, 2002.
[6] NIST. National institute for standardization and technology.

http://www.nist.gov/dads/HTML/tree.html.

[7] F. Paternò. Model-based tools for pervasive usability. Interacting with Computers, 2004.
[8] F. Paternò, C. Mancini, and S. Meniconi. ConcurTaskTrees: A diagrammatic notation for

specifying task models. In INTERACT ’97: Proceedings of the IFIP TC13 Interantional

Conference on Human-Computer Interaction, pages 362–369. Chapman & Hall, Ltd., 1997.
[9] S.J. Payne. Task Action Grammar. In Bullinger H. J. and Shackel B., editors, Proceedings

INTERACT’84, pages 139–144, North-Holland, 1984.

[10] G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report DAIMI
FN-19, University of Aarhus, 1981.

[11] D. Scapin and C. Pierret-Golbreich. Towards a method for task description: MAD. Work
with Display Units, 89:371–380, 1989.

[12] B. Sufrin and R. Bornat. Animating Operational Semantics with JAPE. cite-

seer.ist.psu.edu/485702.html.
[13] R. van Loo, G. van der Veer, and M. van Welie. Groupware Task Analysis in practice:

a scientific approach meets security problems. In 7th European Conference on Cognitive

Science Approaches to Process Control, 1999.
[14] M. van Welie. Task-based User Interface Design. PhD thesis, Vrije Universiteit Amsterdam,

2001.
[15] M. van Welie, G. van der Veer, and A. Koster. Integrated representations for task modeling.

In Tenth European Conference on Cognitive Ergonomics, pages 129–138, 21-23 August 2000.

[16] M. van Welie and G.C. van der Veer. Structured methods and creativity: a happy Dutch

marriage. In Co-Designing 2000, 2000.

Department of Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: adriana, motogna@cs.ubbcluj.ro

