
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 2, 2006

DYNAMIC PROGRAMMING AND d-GRAPHS

KÁTAI ZOLTÁN

Abstract. In this paper we are going to introduce a special graph, which we
have called d-graph, in order to provide a special tool for such an optimum
problem’s analysis which breaks down into two or more subproblems by every
decision.

1. Introduction

The dynamic programming as a method for resolution of optimizing problems
was worked out by Richard Bellman. His first book about dynamic programming
was published in 1957 [1]. Since then until his death in 1982 he wrote several books
and articles in this area. In 1962 Bellman together with Dreyfus published the book
Applied Dynamic Programming [2]. In this publication they drew attention to the
fact that dynamic programming can be formulated as a graph search problem.
Later this subject was largely analyzed in some papers. For example Georgescu
and Ionescu introduced the PD-tree notion [3]. In this paper we are going to
introduce a special graph, which we have called d-graph (from division-graph),
in order to provide a special tool for such an optimum problem’s analysis which
breaks down into two or more subproblems by every decision (see later).

2. Optimizing problems

The efficient solving of numerous programming problems implies their optimal
breaking down into subproblems. In the present paper we are dealing with such
optimizing problems where the following conditions are true:

• There is a target function which has to be optimized.
• The optimizing of the target function implies to break down the problem

into subproblems.
• This involves a sequence of decisions.

Received by the editors: May 20, 2006.
2000 Mathematics Subject Classification. D.1.0 [Programming Techniques]: General, G.22.

[Discrete Mathematics]: Graph Theory - Graph Algorithms, Path and Circuit Problems, Trees.
1998 CR Categories and Descriptors. code [Topic]: Subtopic – Detail ; code [Topic]:

Subtopic – Detail .

41

42 KÁTAI ZOLTÁN

• Concerning the division into subproblems, with each decision (cut) the
problem is reduced to one (I. type optimizing problems) similar, but
smaller size subproblem, or breaks into two or more (II. type optimizing
problems) similar, but smaller size subproblems.

• The target function is defined on the set of the problem’s subproblems.
• The principle of optimality is valid for the problem, according to which

the optimal solution of the problem can be built from the optimal solu-
tions of its subproblems (the optimal value of the target function refer-
ring to the problem can be determined from the optimal values referring
to the subproblems).

• Out of the different possibilities of breaking down the problem, we con-
sider optimal that one (or that sequence of decisions) which - in ac-
cordance with the basic principle of optimality - involves the optimal
construction of the solution of the problem.

• We call a subproblem trivial when the value of the target function refer-
ring to it is given by the input data of the problem in a trivial way.

Such an optimizing problem is solved efficiently with the so called dynamic
programming technique.

Example 1. Let’s calculate the result of the product of matrixes A1×A2×· · ·×An

(the dimensions of the matrixes are: d0 × d1, d1 × d2, . . . , dn−1 × dn). Due to
the associativity of the multiplication, we can perform this in several ways. Let’s
determine such a parenthesis of the product (its breaking down into subproblems)
where the corresponding order of the multiplication of matrixes involves a minimal
number of basic multiplications (the target function).

For example, if

n = 4, A1(1× 10), A2(10× 1), A3(1× 10), A4(10× 1)

The optimal breaking down into subproblems: (A1×A2)×(A3×A4), which in-
volves 21 basic multiplications. A worst solution would imply 210 multiplications:
((A1)× (A2 ×A3))× (A4).

The structure of an optimizing problem can be described by a d-graph (division
graph) , defined in the followings.

3. d-graphs

Definition 1. We call the connected weighted digraph Gd(V, E, C) a d-graph if
the following conditions are fulfilled:

(1) V = Vp ∪ Vd and E = Ep ∪ Ed

(2) Vp - the set of the p type nodes of the graph (p-nodes).
Vp = {p1, p2, . . . , pnr p}, nr p - number of p-nodes.

(3) Exactly one element of the set Vp is a source node (f).

DYNAMIC PROGRAMMING AND d-GRAPHS 43

(4) We assign the set of p type sink nodes of Gd with S(Gd) (nr s marks
the number of sink nodes).

(5) Vd - the set of the graph’s d type nodes (d-nodes); nr d - number of
d-nodes.

(6) All the neighbours of the d-nodes are p type and inversely, all the neigh-
bours of the p-nodes are of d type. Each d-node has exactly one in-
neighbour of p type, which we call p-father. The out-neighbours of the
p-nodes are called d-sons. Each d-node has at least one p type out-
neighbour and we are going to refer to these as p-sons.

(7) The d-nodes are identified with two indexes: For example the notation
dik refers to the d-son identified as the kth d-sons of the p-node pi.

(8) Ep - the set of p type arcs of the graph (p-arcs).
Ep = {(pi, dik)/pi ∈ Vp, dik ∈ Vd}.

(9) Ed - the set of d type arcs of the graph (d-arcs).
Ed = {(dik, pj)/dik ∈ Vd, pj ∈ Vp, i < j}. We should notice that the

p type descendent of any p-node have bigger indexes. So in case of any
d-graph the source is the 1 node.

(10) The C : Ep → R function associates a cost to every p-arc. We consider
the d-arcs of zero cost.

Theorem 1. Every d-graph is acyclic.

Proof. Let’s assume that an oriented cycle exists in one of the d-graphs. Ac-
cording to the sixth item of the definition the p and d type nodes alternate on the
cycle. Should the cycle consist of one p-node and one d-node, then the p-node is
the p-father and also the p-son of node d in the same time. But this contradicts
the ninth item of the definition according to which the p-sons of a d-node have
always bigger indexes than its p-father. In case there are at least two nodes of
both types, then let’s consider pi and pj two consecutive p-nodes of the cycle. As
pi is the ancestor and in the same time the descendent of pj - also according to
the ninth item of the definition - i should be smaller and also bigger than j, which
is obviously impossible. So every d-graph is acyclic.

Conclusion 1. The p-nodes of any d-graph can be arranged in topological order.

The following picture presents such a d-graph where each d-node has exactly
two p-sons.

Definition 2. We call the d-graph gd(v, e, c) the d-subgraph of the d-graph Gd(V,E, C),
if

• vp ⊆ Vp, vd ⊆ Vd, ep ⊆ Ep, ed ⊆ Ed and S(gd) ⊆ S(Gd)
• c : ep → R and c(x) = C(x) for any x ∈ ep

• the set of the d, respectively p type sons of any p, respectively d type node
of gd are similar in the gd and Gd d-graphs.

44 KÁTAI ZOLTÁN

- p-nodes (the black one is source, the light grey one is sink)

- d-nodes

- oriented p-arcs

- oriented d-arcs

(we haven’t drawn the directions of the arcs explicitely in order to

avoid making the picture too packed. They indicate always from top

to bottom.)

11 12 13
14

15

1098
7

4
5

6

32

1

1,1 1,2 1,3 1,4

2,1 2,2 2,3 3,1 3,2 3,3

6,1

6,2

7,1
8,1 9,1

Figure 1. d-graph

It results from the above definition that every p-node of a d-graph unequivocally
identifies the d-subgraph for which the respective node is its source.

Definition 3. We call d-tree the d-graph where every p-node (except the sinks)
has exactly one son. The source of a d-tree is called d-root and its sinks are called
d-leaves. The set of leaves of the Td d-tree are marked with L(Td).

Definition 4. We call the d-tree td(vt, et, c) the d-subtree of the d-tree Td(V t, Et, C)
if

• vtp ⊆ V tp, vtd ⊆ V td, etp ⊆ Etp, etd ⊆ Etd and L(td) ⊆ L(Td)
• c : etp → R and c(x) = C(x) for any x ∈ etp
• the set of p-sons of any d-node of td corresponds in the td and Td d-trees.

Definition 5. We call a d-tree Td(V t, Et, c) the d-subtree of the d-graph Gd(V,E, C)
if

DYNAMIC PROGRAMMING AND d-GRAPHS 45

• V tp ⊆ Vp, V td ⊆ Vd, Etp ⊆ Ep, Etd ⊆ Ed and L(Td) ⊆ S(Gd)
• c : Etp → R and c(x) = C(x) for any x ∈ Etp
• the set of p-sons of any d-node of Td corresponds in the d-tree Td and

the d-graph Gd.

If the root of Td corresponds to the source of Gd, then we can speak about a
spanning d-subtree.

Definition 6. By the costs of a d-tree we mean the total costs of its p-arcs.

Definition 7. We call the spanning d-subtree of a d-graph with the lowest costs
minimal cost spanning d-subtree.

Definition 8. (the basic principle of optimality): We say that a d-graph has an
optimal structure if every d-subtree of its optimal (having minimal costs) spanning
d-subtree is itself an optimal spanning d-subtree of the d-subgraph determined by
its root.

4. Optimal Structure d-graphs

Let Gd(V, E, C) be a d-graph. In the followings we are going to define a function
C of p-arc-costs where every d-graph will be of optimal structure. Before doing
that we are defining the node-weighing functions wp and wd. We mark the set of
d-sons of the p-node pi with d son set(pi) and the set of p-sons of the d-node dik

with p son set(dik).
The weight-function wp :

wp : Vp → R
for every pi, i = 1 . . . nrp p-node corresponds

wp(pi) = optimum {wd(dik)}, if pi 6∈ S(Gd)
dik ∈ d son set(pi)

wp(pi) = hr, if pi is the rth sink of the d-graph
where {h1, h2, . . . hnr s} ⊂ R is an input set which characterizes
the Gd d-graph

The wp weight of every p-node (except the sinks) is equal to the wd weight of
its ”optimal d-son”.

The weight function wd :
wd : Vd → R
for every dik d-node corresponds

wd(dik) = ϕ({wp(pj)/pj ∈ p son set (dik)})
The function ϕ describes mathematically how the wd weight of a d-node can

be calculated from the wp weights of its p-sons. The function ϕ also characterizes
the Gd d-graph

After having introduced the above weight functions, we define the cost function
C∗ in the following way:

C∗ : Ep → R, C∗((pi, dik)) = |wp(pi)− wd(dik)|

46 KÁTAI ZOLTÁN

Theorem 2. Every d-graph Gd(V, E,C∗) has optimal structure.

Proof. As we have chosen the weight of the optimal d-sons as the weight of
the p-nodes, every p-node is adjacent to at least one zero cost p-arc. It derives
from this that the minimal cost spanning d-subtree and its every d-subtree will
have zero costs. As C∗, by its definition, assigns positive costs to the p-arcs, it
is natural that every d-subtree of the minimal cost spanning d-subtree will be
a minimal cost spanning d-subtree of the d-subgraph which has a corresponding
source of its root.

5. Determination of the optimal spanning d-subtree with the
implementation of the basic principle of optimality

Let Gd(V, E,C∗) be an optimal structure d-graph. According to the basic
principle of optimality, the optimal spanning d-subtree of any gd d-subgraph of Gd

can be determined from the optimal spanning d-subtrees of the son-d-subgraphs
of gd. Consequently we are going to determine the optimal spanning d-subtrees
belonging to the nodes pi ∈ Vp(i = 1 . . . nr p) in a reversed topological order. This
order can be ensured if at the depth-traversing, we deal with the certain nodes at
the moment we are leaving them.

We use the arrays WP [1 . . . nr p] and WD[1 . . . nr d] in order to store the
weights of the p, respectively d type nodes of the d-graph Gd. At the begin-
ning we fill up the elements of array WP corresponding to the sinks with their
hi(i = 1 . . . nr s) weights, the other elements with the value NIL. For the storage
of the optimal spanning d-subtree we take array ODS[1 . . . nr p], which stores the
optimal d-sons of the p-nodes. We initialize this array with the value NIL. The
initialization procedure, depending on the nature of the optimum to be calcu-
lated, gives a suitable starting value to the array-element WP [pi] received as a
parameter. The function is better analysis whether the first parameter is better
than the second one, according to the nature of the optimum.

optimal division(pi)
initialization(WP[pi])
for all dik ∈ d son set (pi) do

for all pj ∈ p son set (dik) do
if WP [pj] = NIL then optimal division(pj)
endif

endfor
WD[dik] = ϕ({WP [pj]/pj ∈ p son set (dik)})
if is better(WD[dik],WP [pi]) then

WP [pi] = WD[dik]
ODS[pi] = dik

endif
endfor

DYNAMIC PROGRAMMING AND d-GRAPHS 47

end optimal division
Of course we call the optimal division procedure for the source node, pre-

suming that it is not a sink in the same time. The OSD values of the sinks remain
NIL. The following recursive procedure, based on the ODS array prints the p-arcs
of the optimal spanning d-subtree in a preorder order.

optimal tree (pi)
write (pi, ODS[pi])
for all pj ∈ p son set (ODS[pi]) do

if ODS[pj] 6∈ NIL then optimal tree (pj)
endif

endfor
end optimal tree

6. The optimizing problems and the d-graphs

A d-graph can be associated to any optimizing problem described in the intro-
duction.

• The p-nodes represent the different subproblems given by the breaking
down of the problem. The source represents the original problem, the
sinks the trivial ones.

• The numbering of the p-nodes and the acyclicity given by this go hand
in hand with the fact that, in the course of the breaking down, we reduce
the problem to simpler and simpler subproblems.

• A p-node will have as many d-sons as the number of possibilities in which
the subproblem represented by it can be broken down to its subproblems,
by the respective decision. These decision possibilities are represented
by the p-arcs.

• The d-nodes represent the way the respective subproblem breaks down
into its subproblems with the choices given by the different decisions.

• A d-node will have as many p-sons, as the number of subproblems re-
sulted after the disintegration - with the occasion of the decision repre-
sented by it - of the subproblem described by its p-father. This breaking
down into subproblems is described by the d-arcs.

• If different sequences of decisions taken at the breaking down of a prob-
lem lead to the same subproblem, then the respective p-node will have
identical p-descendents on different descent branches.

• The d-subgraphs of a d-graph express the way in which the subproblems
represented by its sources can be broken down onto further, smaller
subproblems.

• A certain subtree of a d-graph describes one of the breaking downs onto
subproblems of the subproblem represented by its root. The spanning

48 KÁTAI ZOLTÁN

subtrees of a d-graph represent the possibilities of breaking down the
original problem onto its subproblems.

• The optimal structure of the d-graphs expresses the fact that the opti-
mal solution of the problem is built from the optimal solutions of the
subproblems. In other words, the corresponding subsequences of the
optimal sequence of the decisions are also optimal.

• The optimal spanning d-subtree represents the optimal breaking down
of the problem into subproblems (its every p-arc represents one of the
decisions of the optimal sequence of decisions.).

• The wp function is nothing else but the returning of the target function
to be optimized to the Gd d-graph.

• h1, h2, . . . , hnr s real values are the optimal values referring to the trivial
subproblems of the target function, represented by the sinks.

• The nature of the optimum function is directly given by the target func-
tion of the problem and is often one of the minimum or maximum func-
tions.

• The function ϕ is determined by the structure of the problem, the general
rule according to which the solution of a subproblem is built from the
solutions of its subproblems.

Hereby, an optimizing problem can be regarded as the determination of the
weight of the source of a d-graph (the optimal value of the target function concern-
ing the original problem) and of its optimal spanning d-subtree (optimal sequence
of decisions, respectively optimal breaking down into subproblems).

We call the procedure optimal division, which implements the basic principle
of optimality, dynamic programming.

7. Solving a problem given as an example

Compression: A bit-sequence of n elements is given. We also have m other
”shorter” sequences of bits, where there are sequences containing only one bit of
0 respectively of 1, too. Let’s replace the first bit-sequences with the minimal
number of short bit-sequences.
Example:

Let the first sequence of bits be 01011.
Further the short sequences are: 1:0, 2:1, 3:11, 4:010, 5:101. We can see that

the original sequence of bits can be broken down to the given short sequences in
several ways:

(0)(1)(0)(1)(1), (0)(1)(0)(11), (010)(11), (0)(101)(1), (010)(1)(1)

The optimal solution is of course represented by the third version, whose com-
pressed code is 43.

How can the problem be broken down into its subproblems? In so far as the
original bit-sequence is not one of the given short sequences, we cut it in two, thus

DYNAMIC PROGRAMMING AND d-GRAPHS 49

reducing its optimal compression to the compression of the sub-sequences of bits
gained at the left and right side of the cut. We continue this until we get sequences
of bits which appear in the given short sequences (trivial subproblems replaceable
one short sequence’s code).

The general subproblem is represented by the optimal compression of the sub-
sequence i . . . j of the original sequence of bits. These indexes will identify the
p-nodes of the d-graph which can be assigned to this problem. The source of the
problem given as an example is the p-node 15 (read one-five). The role of the
WP array is played by the part of a bidimensional array a[1 . . . n, 1 . . . n] situated
on and above its diagonal. This part of the array can be interpreted as the im-
plicit representation of the d-graph of the problem. The p-nodes are represented
by the corresponding array-elements and we can consider as their wp weight the
length of the code of the optimal compression. The ij p-node -in so far as it
is not a sink (the sequence i . . . j is not part of the given short sequences)- will
have a number of (j − i + 1) d-sons, whose p-son-pairs will be the p-node-pairs
(ik, (k+1)j)(k = i . . . j−1). So the d-nodes, respectively the p and d type arcs are
only implicitly present in this representation of the d-graph. Of course this also
implies that we do not use a WD array. This is not necessary, as the weighing of
the d-nodes of the d-graphs can be avoided by merging formulas (1) and (2) (the
weight of any p-node which is not a sink can be determined from the weight of its
direct p-descendents):

wp(pi) = optimum {ϕ({wp(pk)/pk ∈ p son set(dj)})}, if pi 6∈ S(Gd)
dj ∈ d son set (pi)

In the role of the ODS array the part of the bidimensional array situated above
the diagonal can be used. The array-element a[j, i](i < j) implicitly represents the
optimal d-son of the p-node ij by the storage of the optimal k value belonging to
the optimal cut of the sequence of bits i . . . j. If the p-node ij(i < j) is a sink, then
the element a[j, i] will get the value zero. The p-nodes ii(i = 1 . . . n) are obviously
all sinks.

The following picture (see Figure 2.) represents the d-graph of the sample prob-
lem, as it is hidden in the array a storing the optimal values of the subproblems.
We have highlighted the optimal spanning d-subtree of every d-subgraph with the
source ij.

With such a representation of the d-graph the traversing of the non-sink p-
nodes in a reversed topological order can be achieved by the simple traversing
of the array-elements situated above the main diagonal (for example row by row
from below upwards left to right). As the optimal code of any sequence of bits is
the concatenation of the optimal codes of the subsequences given by its optimal
cut, the function ϕ is a simple additive function. As we are looking for the com-
pression with the shortest code, the function optimum will calculate a minimum.
The input data is stored by the variables n, m, b[1 . . . n] and sequence[1 . . .m]. The

50 KÁTAI ZOLTÁN

a 1 2 3 4 5

1

1(1) 2(12) 1(4) 2(15) 2(43)

2 1

1(2) 2(21) 1(5) 2(52)

3 0 2

1(1) 2(12) 2(13)

4 3 0 3

1(2) 1(3)

5 3 2 4 0

1(2)

Figure 2. The d-graph stored in an implicit way in the array a

function nr sequence (i, j) checks whether the sequence of bits b[i . . . j] is present
in the given short sequences. If yes, then it returns its code (its index from the
array sequences), if no, it returns zero. In parallel with the filling up of the ar-
ray a we store the optimal codes themselves, too, in an array COD[1 . . . n, 1 . . . n]
(in the above picture we have represented them in brackets). The function con-
cate(cod1,cod2) concatenates the codes received as parameters.

for i=1,n,1 do
a[i,i]=1
COD[i,i]=nr sequence(i,i)

endfor

DYNAMIC PROGRAMMING AND d-GRAPHS 51

for i=n-1,1,-1 do
for j=i+1,n,1 do

cod=nr sequence(i,j)
if cod>0 then

a[i,j]=1
COD[i,j]=cod
a[j,i]=0

else
a[i,j]=0
for k=i,j-1,1 do

if a[i,k]+a[k+1,j]>a[i,j] then
a[i,j]=a[i,k]+a[k+1,j]
COD[i,j]=concate(COD[i,k],COD[k+1,j])
a[j,i]=k

endif
endfor

endif
endfor

endfor

The optimal code of the original sequence of bits gets into the array COD[1,n].
In case we would also like the optimal parenthesis of the bit-sequence, we can
obtain this by traversing in depth the optimal spanning d-subtree of the d-graph
based on array a.

depthfirst(i,j)
write ’(’
if i=j OR a[j,i]=0 then

for k=i,j,1 do
write b[k]

endfor
else

depthfirst(i,a[j,i])
depthfirst(a[j,i]+1,j)

endif
write ’)’

end depthfirst

8. Conclusions

First of all it is interesting to remark that in case of the I. type optimizing
problems the attached d-graphs can be reduced to a ”normal graphs” (since every
d-node has an unique p-son they can be left out from the graph by matching their

52 KÁTAI ZOLTÁN

p-father directly with their unique p-son). In this special situation the optimal
solution will be represented by the optimal root-leaf path of the graph. By intro-
ducing the d-graphs, the consistent discussion of several optimizing problems has
become possible, and also the theoretical basis of the dynamic strategies related
to them. The relation is similar to the one between the greedy algorithm and the
theory of matroids.

References

[1] R. Bellman, Dynamic Programming, Princeton University Press, New Jersey, 1957.
[2] R. Bellman, S. Dreyfus, Applied Dynamic Programming, Princeton University Press, New

Jersey, 1962.
[3] H. Georgescu, C. Ionescu, The Dynamic Programming Method, a New Approach, STUDIA

Universitatis Babes-Bolyai, Cluj, 43, 1999, pp. 23-38.

E-mail address: katai zoltan@ms.sapientia.ro

