
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 2, 2006

NOTES ON THE ROLE OF THE INCREMENTALITY
IN SOFTWARE ENGINEERING

LADISLAV SAMUELIS AND CSABA SZABÓ

Abstract. The incrementality principle appears in various contexts in the
relatively short history of software engineering. This fact seems natural be-
cause the processes like software comprehension, design, refinement and im-
plementation are done incrementally in practice. Due to this common fact
the incrementality principle is interpreted often superficially in the software
engineering literature. The aim of this paper is to highlight the ubiquity of
the incrementality utility in software engineering literature and to clarify the
concepts behind its role in various contexts.

1. Background and motivation

The notion of incrementality is being applied simultaneously both in the field
of artificial intelligence (e.g. in the field of machine learning) and software engi-
neering.

While reading the software engineering literature we observe that the incre-
mentality principle is mentioned and utilized frequently in various contexts in its
relatively short history (see in the next paragraph). This ubiquitous presence
of the incrementality principle, almost in every software development paradigm,
motivated the investigation towards unrevealing the similarities and differences
between its interpretations in various contexts. Another source of the motivation
is the challenge to condense the knowledge about the incrementality principle used
in contemporary experimental software engineering practices. The aim of this pa-
per is to pave the route towards the understanding and reuse of this notion in the
future contexts. In order to achieve this goal, we will investigate the utilization of
the incrementality utility in several selected software development approaches.

Received by the editors: September 13, 2006.
2000 Mathematics Subject Classification. 68N19, 68N30.
1998 CR Categories and Descriptors. D.1.2 [Software]: Programming Techniques – Au-

tomatic Programming; D.2.2 [Software]: Software Engineering – Design Tools and Techniques.

11



12 LADISLAV SAMUELIS AND CSABA SZABÓ

2. The ubiquity of incremental tasks

The following selective sample of works (not exhaustive) shows the wide range
of the usage of the incrementality utility. A brief historical overview of the ”in-
cremental and iterative development” is presented in the work of C. Larman and
V. Basili [11]. This work summarizes the role of the iterative and incremental
software development through significant software projects since the mid-1950s.
It focuses on the incrementality utility, applied in the software engineering pro-
cesses, from the managerial point of view. Describes the driving thoughts and
misbeliefs, which were behind the practices applied in the past decades in the field
of software engineering.

The incrementality concept is stressed and dealt also in the field of program
comprehension, which is already a matured topic with standalone conferences [8].
It is not a trivial task to understand the architecture of object-oriented pro-
grams [22]. It is obvious, that to enhance the functionality or to add new features
requires to comprehend the task in more detail. As software engineering topics
evolved, the incremental comprehension of programs came into focus. In other
words it means that without the thorough analysis it is impossible to make effec-
tive reform or re-engineering. Remarkable is the statement of K. Nygaard [5] who
said: ”to program is to understand”. We accept in general that comprehension is
also a continuous iterative and incremental process. The fact that problem solving
does not progress in a linear manner from one activity to the next is highlighted as
the conjecture: ”empirically based models mature from understanding to explain-
ing and predicting capability”. This conjecture is explained in the handbook of
authors A. Endres and D. Rombach [6, chap. 12], which is devoted to the empirical
aspects of software engineering.

The recent work of C. Larman [10] stresses the role of the incrementality against
the waterfall model in the software development. In addition, the work stresses
its crucial role in the history of the software engineering and considers it as a
fundamental revolutionary change against the waterfall model of the software de-
velopment. Authors R. E. Fairley and M. J. Wilshire [7] exhaustively identify the
nature of the iterative rework. They point to the fuzziness between the avoidable
and unavoidable rework and the incrementality issue is dealt from this point of
view.

The field of software design also uses the notion of iteration and incrementality,
e.g. Arlow and Neustadt characterize iterations, in association with the Unified
Process [3], as ”mini projects, which are easier to manage and complete than the
original large SW development project”.

Machine learning differentiates between nonincremental and incremental learn-
ing (e.g. in [14]). The same terms are marked in [17] as revolutionary and evolu-
tionary learning strategies. In essence, the difference between these two definitions



NOTES ON THE ROLE OF THE INCREMENTALITY IN SW ENGINEERING 13

lies in the fact that the non-incremental (revolutionary) approach is based on one-
shot experience and the incremental (evolutionary) learning allows the learning
process to take place over time in a continuous and progressive way, taking into
consideration also the history of the training sets at building the inferred rules.

Incremental change plays important role in practical software engineering. At
the present time the incremental change in object-oriented programs are in the
focus (see for instance [20]). These activities investigate the impact of adding
new functionalities into the code and finding the relevant program dependencies.
Incrementality is of importance to software visualization too [9]. The aim is to get a
better comprehension of the software behavior by representing complex structures
graphically.

We may conclude the above mentioned remarks by the statement of E. W. Di-
jkstra: ”the only available technique for effective ordering of one’s thoughts is by
separation of concerns”. This approach leads to the observation of new facts and
in ths way to improve incrementally the previous knowledge. In summary, the
incrementality utility is a broad term and is in the focus of software engineers
from various aspects. In the next sections we narrow the focus towards revealing
the principles behind these experiences and endeavours.

3. Iteration and incrementality

The objective of the software development is to model a certain aspect or ab-
straction of the reality [16]. Software engineering, as every engineering discipline,
is characterized by trials and errors, which are necessary steps for clarifying the
comprehension of the requirements, design and implementation. It consists of
many small steps and it is necessary to take into account plenty of details. Soft-
ware systems are becoming more and more complex over time. They are changing
and modified; the complexity arises and we need more time to comprehend them.
The maintenance of the final code and other software artifacts consumes more
time too.

As noted in Section 2, there are many approaches that present some aspects
of the incrementality utility and are used under names like incremental learning,
evolutionary and revolutionary rework, program synthesis and incremental build-
ing. Therefore, a clear definition of the ”iteration” and the ”incrementality” turns
out to be vital. Here are the definitions:

• We define that ”iteration” refers to repeating an activity, e.g. phases,
in the software development process. Iteration is applied e.g. in refac-
toring when developers perform semantics-preserving structural trans-
formations usually in small steps. Motivation for the improvement may
be focused towards the enhancement of the efficiency of the code with
respect to the time or space complexity or towards the improvement the
structure so that developers can more easily understand, modify, evolve



14 LADISLAV SAMUELIS AND CSABA SZABÓ

and test it. The research domain that addresses this problem is referred
also as restructuring.

• On the other hand ”incrementality” refers to the process of adding new
functionalities through successive implementations. This is a significant
and essential difference to the iteration and deserves much more atten-
tion. First of all the incrementality principle has its mathematical roots
and is explained in the theory of inductive inference [2]. This approach
to problem solving is also called generalization and will be explained
in more detail in Section 4. Incremental software development is some-
times called build a little, test a little. We may observe the similarity
between building concepts and models in software engineering and build-
ing hypotheses in mathematics. This process is very clearly highlighted
in Polya’s classic work, ”How to Solve It” [19].

The empirical evidence from the real-world software suggests that learning or
incremental program development is possible only when the data are presented
incrementally. For instance programming languages dispose with constructs, which
help to postpone solving some issues. As an example is the exception mechanism
in the object-oriented programming. This process makes, of course, the software
more complex and drifts away from the original design. These facts may lower
the quality of the software but it is the task of the validation and verification to
ensure the formal quality software.

To sum up, the incrementality principle is ubiquitous in the literature devoted to
the software engineering. After every step we discover new requirements, analyze
them, plan, implement and test. Every iteration adds new insights and the system
grows in this way, or logically clarifies. In other words, software programs are too
complex to try to get the details of any one artifact entirely correct without some
amount of experimentation. Software developers’ ideas are evolving as they work
and the steps are associated with the progress, this is evidence.

4. Incrementality in the software development

In the next sections we will focus on the application of the incrementality prin-
ciple in software engineering paradigms, which are aimed at program synthesis.
The selected paradigms are as follows:

(1) Programming by examples,
(2) Automatic program synthesis from specifications,
(3) Test driven programming,
(4) Programming by sketching.

4.1. Programming by examples. Programming by examples (positive or neg-
ative) seems popular and recurrent topic to the software research community, but
often is neglected the fact that this approach has very limited usage actually and
it is not generally applicable [21]. Let us analyze it in more detail. The principle of



NOTES ON THE ROLE OF THE INCREMENTALITY IN SW ENGINEERING 15

Programming By Example (PBE), or Programming By Demonstration (PBD) or
doing by watching, was investigated intensively around the eighties and a survey
is available in the work of H. Lieberman [12].

We have to be aware that the paradigm of programming by example has the-
oretical background in the theory of inductive inference, as we mentioned in Sec-
tion 3. Thought provoking is again the work of G. Polya [19], who declares the
fundamental role of the mathematical induction in the problem-solving domain.

First attempts to synthesize programs by examples were done in the field of
the automata theory. The task was to synthesize finite automata from a set of
examples. The examples were defined by set of pairs (state and transition). The
work of A. W. Biermann [4], e.g., describes practical results from experiences with
implemented incremental algorithms.

Programming by example is recently also mentioned as an exciting new tech-
nology in the work of H. Lieberman and C. Fry: Will Software Ever Work? [13].
But in reality this approach is old and characterized in the work of A. Endres and
D. Rombach: A Handbook of Software and Systems Engineering. They state that
in fact the code generated from test cases will satisfy all test cases but we will
always need one more test case because the generalization delivers a model which
need not cover all test cases [6, p. 89].

What is the definition of the incremental algorithm? An algorithm is incremen-
tal if, for any given training example e1 . . . en, it produces a sequence of hypotheses
h0, h1, . . . , hn, such that hi+1 depends only on hi and the current example ei. Now
we may substitute various software artifacts, e.g. components, for hi, which may
appear in various contexts of the software development cycle (see Figure 1).

In other words it means that the hypothesis built by inductive inference will be
compatible only with the current set of the proposed examples and nothing more.
E.g., when we construct a cycle, we widen the scope of the algorithm in inductive
way. This is the inherent feature of the inductive inference that newly generated
hypothesis need not follow the intended functionality.

e1

eihi+1

build the
1st hypothesis

build a new hypothesis
from the example

invent an example
by observation

Figure 1. The principle of the incremental algorithm.



16 LADISLAV SAMUELIS AND CSABA SZABÓ

4.2. Automatic program synthesis from specifications. Synthesis of pro-
grams from specifications is a methodology, which allows to construct the program
code automatically from the specification. The essence of these methods lies in the
transformations, which could be used for the modification of the specifications and
in order to reach the final code. The final code is constructed by the application
of transformation rules to the specifications. Such a program is verified against
the specification and that is why it is not necessary to prove the correctness of the
program additionally. Recent review can be found in [18]. The problem with this
approach is that it is an illusion to expect that perfect requirements can be for-
mulated ahead of time. Both developers and users may need some feedback. They
require a (learning cycle). This is cited again from the Handbook of Software and
Systems Engineering [6, p. 15]. The role of the incrementality is hidden behind
the phrase learning cycle. In other words, we cannot predict the correctness of our
abstraction with the reality. This approach is suitable only for trivial tasks.

4.3. Test driven programming. Incrementality principle may be observed both
in the specification and in the implementation phases of the software development.
The following simple figure illustrates the idea.

hiSpecification Implementation

Figure 2. Location of the model hi.

On the specification (left hand) side we may consider the examples ei as test
cases ti against which the requirements are clarified and in this way hi is continu-
ously modified. If we consider hi as a fixed artifact (e.g. program) and we intend
to test the program (approaching the picture from the right hand side) then we
may consider the tests ti as examples ei, which have to be accepted or ejected by
the hi. Of course, testing shows only the presence of bugs and not the absence of
errors (Dijkstra’s law [5] ). This simple picture shows the relativity of the concepts
as ”example” and ”test”. Both concepts’ interpretations depends on the context.
To sum up, the interpretation of the examples and the tests depends only on the
actual agreement whether hi is fixed or not. We stress again, that the principle
behind building hi is the incremental principle as mentioned in Section 4.1. If
a new example has to be embedded into the actual model then the incremental
algorithm has to modify (including the regression) the already prepared model. In
each case the final model has to comply with the new set of examples.



NOTES ON THE ROLE OF THE INCREMENTALITY IN SW ENGINEERING 17

4.4. Programming by sketching. Programming by sketching is motivated by
the fact that programmers may acquire powerful help during the software de-
velopment. In fact this approach helps in the software development with the
visualization of available components. The group led by R. Bodik [15] recently
experiments with this approach in practice. This approach argues that the final
work of coding has to be done by computer and also the computer has to ease
developers’ work by provision of efficient support, or data retrieval, in order to
create the final code more efficiently. Programming by sketching relies on the fact
that programmers are sketching actually the skeletons (e.g. applying patterns or
components off the shelf) of programs and the coding is done automatically. This
approach is also part of the agile programming [1]. Following our definition of the
incremental algorithm in Section 4.1, we may observe that in this case the artifact
of the incrementality paradigm is the code segment or component.

5. Conclusion

The aim of this paper was to show and discuss the role of the incrementality
principle in selected software development paradigms, which do not fit together at
the first sight and in this way to provoke thinking. We have tried to synthesize
the scattered fragments of the applied incrementality principle in the software
engineering literature in order to create a more condensed foresight. We know that
we did not invent a new solution to an existing problem, we dug out rather old
ideas and observed them in new contexts. There is no doubt that new paradigms
will emerge in the future. It is the task of the informatics to show the role of the
principles in the emerging fashionable ideas.

References

[1] Scott W. Ambler. The Object Primer 3rd Edition, Agile Model Driven Development with
UML 2. Cambridge University Press, 2002. ISBN: 0-521-54018-6.

[2] D. Angluin and C. H. Smith. Inductive Inference: Theory and Methods. Computing Surveys,
15(3):238–269, September 1983.

[3] Jim Arlow and Ila Neustadt. UML 2 and the Unified Process: Practical Object-Oriented
Analysis and Design. Addison-Wesley, second edition, June 2005. ISBN: 0-321-32127-8.

[4] Alan W. Biermann. Automatic programming. In Stuart C. Shapiro, editor, Encyclopedia of
Artificial Intelligence. John Wiley and Sons, January 1992.

[5] L. Böszörményi, S. Podlipnig (with contributions of Manfred Broy, Tove Dahl, and Marius
Nygaard). People behind Informatics (In memory of Ole-Johann Dahl, Edsger W. Dijkstra,
Kristen Nygaard). Institute of Information Technology, University of Klagenfurt, 2003.

[6] A. Endres and S. Rombach. A Handbook of Software and Systems Engineering; Empirical
observations, laws and theories. Pearson, Addison Wesley, May 2003.

[7] Richard E. Fairley and Mary Jane Wilshire. Iterative rework: The good, the bad and the
ugly. IEEE Computer, 38(9):34–41, September 2005.

[8] http://www.ieee-iwpc.org, International Conferences on Program Comprehension.



18 LADISLAV SAMUELIS AND CSABA SZABÓ

[9] C. Knight and M. Munro. Visual Information: Amplifying and Foraging, Proceedings of
SPIE, San Jose, USA, volume 4032. International Society for Optical Engineering, January
2001. ISBN: 0-8194-3980-0.

[10] C. Larman. History and evidence of evolutionary versus waterfall methods. http://it.sun.
com/eventi/jc05/pdf/02_Larman.pdf. Java Conference 05, 22–23 June 2005, Milan, Italy.

[11] C. Larman and V. R. Basili. Iterative and incremental development: A brief history. IEEE
Computer, 36(6):46–57, June 2003.

[12] H. Liebermann, editor. Your Wish is My Command: Programming by Example. Morgan
Kaufmann, San Francisco, February 2001.

[13] H. Liebermann and C. Fry. Will software ever work? Communications of the ACM,
44(3):122–124, March 2001.

[14] K. Machová. Machine learning. Faculty of electrical engineering and informatics, Technical
University of Košice, elfa, 2002.

[15] David Mandelin, Lin Xu, and Rastislav Bod́ık. Jungloid Mining: Helping to Navigate the
API Jungle. ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI05), pages 48–61, 2005. ISSN: 0362-1340.

[16] B. Meyer. Reality: A cousin twice removed. IEEE Computer, 29(7):96–97, July 1996.
[17] R. Michalski. Knowledge repair mechanisms: Evolution vs. revolution. Technical report,

Department of Computer Science, University of Illinois, February 1985. Reports of the
Intelligent Systems Group, ISG 85-11, UIUCDCS-F-85-941.

[18] Alberto Pettorossi and Maurizio Proietti. Rules and strategies for transforming functional
and logic programs. ACM Computing Surveys, 28(2):360–414, June 1996.

[19] G. Polya. How to solve it: A New Aspect of Mathematical Method. Princeton University
Press, 2nd edition, 1957.

[20] V. Rajlich. Incremental change in object-oriented programming. IEEE Software, 21(2):62–
69, July/August 2004. ISSN:.

[21] Ladislav Samuelis. Synthesis of programs by examples. Technical report, Budapest Univer-
sity of Technology, May 1990. PhD thesis,(in Hungarian).

[22] N. Wilde and B. Huitt. Maintenance support for object-oriented programs. IEEE Transac-
tions on Software Engineering, 18(12):1038–1044, 1992.

Acknowledgements

The research was supported by the following grants:
• Mathematical Theory of Programming and its Application in the Meth-

ods of Stochastic Programming. Scientific grant agency project (VEGA)
No. 1/2181/05

• Technologies for Agent-based and Component-based Distributed Sys-
tems Lifecycle Support. Scientific grant agency project (VEGA) No.
1/2176/05

• Evaluation of operational parameters in broadband communicational in-
frastructures: research of supporting platforms. Scientific grant agency
project (VEGA) No. 1/2175/05

Department of Computers and Informatics, Technical University of Košice, Letná 9,
042 00 Košice, Slovakia

E-mail address: Ladislav.Samuelis@tuke.sk, Csaba.Szabo@tuke.sk


