
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 2, 2006

A GRAPH ALGORITHM FOR IDENTIFICATION OF
CROSSCUTTING CONCERNS

GABRIELA ŞERBAN AND GRIGORETA SOFIA MOLDOVAN

Abstract. The purpose of this paper is to present a new graph-based ap-
proach in aspect mining. We define the problem of identifying the crosscutting
concerns as a search problem in a graph and we introduce GAAM algorithm
(Graph Algorithm in Aspect Mining) for solving this problem. We evaluate
the results obtained by applying GAAM algorithm from the aspect mining
point of view, based on a set of quality measure that we have previously de-
fined in [3]. The proposed approach is compared with a clustering approach
in aspect mining ([4]) and a case study is also reported.

Keywords: graph, algorithm, aspect mining.

1. Introduction

1.1. Aspect Mining. The Aspect Oriented Programming (AOP) is a new para-
digm that is used to design and implement crosscutting concerns [2]. A crosscut-
ting concern is a feature of a software system that is spread all over it, and whose
implementation is tangled with other features’ implementation. A well known
example of crosscutting concern is logging. In order to design and implement a
crosscutting concern, AOP introduces a new modularization unit called aspect.
Better modularization, and higher productivity are some of the advantages that
AOP brings to software engineering.

Aspect mining is a relatively new research direction that tries to identify cross-
cutting concerns in already developed software systems, without using AOP. The
goal is to identify them and then to refactor them to aspects, to achieve a system
that can be easily understood, maintained and modified.

1.2. Related Work. Several approaches have been considered for aspect mining
until now. One approach was to develop tools that would help the user to navigate
and to analyze the source code in order to find crosscutting concerns. Some of them

Received by the editors: September, 30, 2006.
2000 Mathematics Subject Classification. 68N99, 68R10.
1998 CR Categories and Descriptors. D.2.7 [Software Engineering]: Distribution,

Maintenance, and Enhancement –Restructuring, reverse engineering, and reengineering; G.2.2
[Mathematics of Computing]: Discrete Mathematics – Graph Theory.

3

4 GABRIELA ŞERBAN AND GRIGORETA SOFIA MOLDOVAN

rely on lexical analysis, and some also include a type-based search ([1], [15], [16],
[17]). Other approach uses clone detection techniques to identify duplicate code,
that might indicate the presence of crosscutting concerns ([13], [18], [19]). These
are all static approaches that analyze the source code for crosscutting concerns.
There are also two dynamic approaches: one that analyzes the event traces ([12]),
and one that uses formal concept analysis to analyze the execution traces ([21]).
In [20] formal concept analysis is used again, but in a static manner. A comparison
of three different approaches can be found in [14].

There is also a clustering approach that constructs the clusters based on the
methods’ names ([7]). The user can then navigate among the clusters, visualize
the source code of the methods and identify the crosscutting concerns.

There are just a few aspect mining techniques proposed in the literature that
use clustering in order to identify crosscutting concerns ([4], [5], [6], [7]).

In [5] a vector space model based clustering approach in aspect mining is pro-
posed. This approach is improved in [4], by defining a new k-means based cluster-
ing algorithm in aspect mining (kAM).

In [3], a part of a formal model for clustering in aspect mining is introduced
and a set of quality measures for evaluating the results of clustering based aspect
mining techniques is presented.

In this paper we propose a new graph-based approach, as an alternative to the
clustering approach in aspect mining. Such an approach has not been reported,
in the literature, so far.

The paper is structured as follows. A theoretical model on which we base our
approach is introduced in Section 2. Section 3 presents our approach. An experi-
mental evaluation of our approach, based on some quality measures, is presented in
Section 4. The obtained results are compared with the ones obtained by applying
kAM algorithm ([4]). Some conclusions and further work are outlined in Section
5.

2. Theoretical Model

In this section we present the problem of identifying crosscutting concerns as a
problem of identifying a partition of a software system.

Let M = {m1,m2, ..., mn} be the software system, where mi, 1 ≤ i ≤ n is a
method of the system.

We consider a crosscutting concern as a set C = {c1, c2, ..., ccn} with C ⊂ M , of
methods that implement this concern. The number of methods in the crosscutting
concern C is cn = |C|. Let CCC = {C1, C2, ..., Cq} be the set of all crosscutting
concerns that exist in the system M .

Definition 1. Partition of a software system M .
The set K = {K1,K2, ...,Kp} is called a partition of the system M = {m1,m2, . . .

A GRAPH ALGORITHM FOR IDENTIFICATION OF CROSSCUTTING CONCERNS 5

,mn} iff 1 ≤ p ≤ n, Ki ⊆ M, Ki 6= ∅,∀1 ≤ i ≤ p, M =
p⋃

i=1

Ki and Ki ∩ Kj =

∅, ∀i, j, 1 ≤ i, j ≤ p, i 6= j.

In the following we will refer to Ki as the i-th cluster of K.
In fact, the problem of aspect mining can be viewed as the problem of finding a

partition K of the system M such that CCC ⊂ K. So, in Definition 2 we introduce
the notion of partitioning aspect mining technique, that will be used in our
approach.

Definition 2. Partitioning aspect mining technique.
Let T be an aspect mining technique and M a software system to be mined. We
say that T is a partitioning aspect mining technique if the result obtained by
T is a partition (Definition 1) K of M .

For a software system, we propose the following steps for identifying the cross-
cutting concerns that have the scattered code symptom:

• Computation - Computation of the set of methods in the selected
source code, and computation of the attribute set values, for each method
in the set.

• Filtering - Methods belonging to some data structures classes like Ar-
rayList, Vector are eliminated. We also eliminate the methods belonging
to some built-in classes like String, StringBuffer, StringBuilder, in a Java
program etc.

• Grouping - The remaining set of methods is grouped in order to obtain
a partition of the software system M (in our approach GAAM).

• Analysis - A part of the obtained clusters are analyzed in order to dis-
cover which clusters contain methods belonging to crosscutting concerns.

We mention that at the Grouping step, a partition of the software system can
be obtained using a clustering algorithm ([4]) in aspect mining, or using GAAM
algorithm, that will be introduced in the next section.

3. Our Approach

In this section we present the problem of obtaining a partition (Definition 1) of
a software system as a search problem in a graph.

This graph based approach is, in fact, a method to identify the clusters in the
system and can be viewed as an alternative to a clustering algorithm in aspect
mining ([4]).

In our approach, the objects to be grouped (clustered) are the methods from the
software system: m1,m2, . . . ,mn. The methods belong to the application classes
or are called from the application classes.

Based on the vector space model, we will consider each method as a l -dimensional
vector: mi = (mi1, . . . ,mil).

6 GABRIELA ŞERBAN AND GRIGORETA SOFIA MOLDOVAN

Crosscutting concerns in non AO systems have two symptoms: code scattering
and code tangling. Code scattering means that the code that implements a cross-
cutting concern is spread across the system, and code tangling means that the
code that implements some concern is mixed with code from other (crosscutting)
concerns.

We have considered two vector-space models that illustrate only the scattered
code symptom. Future development will also consider the code tangling symptom.

• The vector associated with the method m is {FIV, CC}, where FIV is
the fan-in value ([8]) of m (the number of methods that call m) and CC
is the number of calling classes for m. We denote this model by M1.

• The vector associated with the method m is {FIV, B1, B2, ...Bl−1},
where FIV is the fan-in value of m and Bi (1 ≤ i ≤ l − 1) is 1, if
the method m is called from a method belonging to the application class
Ci, and 0, otherwise. We denote this model by M2.

As in a vector space model based clustering ([22]), we consider the distance
between methods as a measure of dissimilarity between them.

In our approach we will consider that the distance between two methods mi

and mj is expressed using the Euclidian distance, as:

(1) dE(mi,mj) =

√√√√
l∑

k=1

(mik −mjk)2.

After a partition of the software system is determined using a partitioning
aspect mining technique, the clusters are sorted by the average distance from
the point 0l in descending order, where 0l is the l dimensional vector with each
component 0 (l is the dimension of the vector space model). Then, we analyze the
clusters whose distance from 0l point is greater than a given threshold.

3.1. The Methods Graph. In this section we introduce the concept of methods
graph and auxiliary definitions needed to define our search problem.

We mention that the idea of constructing the methods graph is specific to aspect
mining and will be explained later.

Definition 3. Let M = {m1,m2, . . . , mn} be a software system and dE (Equation
1) the metric between methods in a multidimensional space. The methods graph
corresponding to the software system M , MGM , is an undirected graph defined as
follows: MGM = (V, E), where:

• The set V of vertices is the set of methods from the software system, i.e.,
V{m1,m2, . . . , mn}.

A GRAPH ALGORITHM FOR IDENTIFICATION OF CROSSCUTTING CONCERNS 7

• The set E of edges is E =
n⋃

i=1

{(mi,mj) | 1 ≤ j ≤ n, j 6= i, dE(mi,mj) =

min{dE(mi, mk), 1 ≤ k ≤ n, k 6= i, (mi,mk) /∈ E} ∧ dE(mi,mk) ≤
distMin}, where distMin is a given threshold.

We have chosen the value 1 for the threshold distMin. The reason for choosing
this value is the following: if the distance between two methods mi and mj is less
or equal to 1, we consider that they are similar enough to be placed in the same
(crosscutting) concern. We mention that, from the aspect mining point of view,
using Euclidian distance as metric and the vector space models proposed above,
the value 1 for distMin makes the difference between a crosscutting concern and
a non-crosscutting one.

In Definition 4 below we will define the problem of computing a partition of the
software system M .

Definition 4. Let M = {m1,m2, . . . ,mn} be a software system, dE (Equation
1) the metric between methods in a multidimensional space and MGM the cor-
responding methods graph (Definition 3). We define the problem of computing
a partition K = {K1,K2, ..., Kp} of M as the problem of computing the connex
components of MGM .

3.2. GAAM Algorithm. In this subsection we briefly describe GAAM algo-
rithm for determining a partition K of a software system M . This algorithm
will be used in the Grouping step (Section 2) for identification of crosscutting
concerns.

Let us consider a software system M = {m1,m2, . . . ,mn} and the metric dE

(Equation 1) between methods in a multidimensional space.
The main steps of GAAM algorithm are:

(i) Create the methods graph, MGM , as shown in Definition 3. We mention
that the threshold distMin used for creating the edges in the graph is
chosen to be 1. The reason for this choice was explained above.

(ii) Determine the connex components of MGM . These components give a
partition K of the software system M .

4. Experimental Evaluation

In order to evaluate the results of GAAM algorithm from the aspect mining
point of view, we use three quality measures defined in [3]: DIV, PAM and PREC.

These measures will be applied on a case study (Subsection 4.1). The obtained
results will be reported in Subsection 4.1. Based on the obtained results, GAAM
algorithm will be compared with kAM algorithm proposed in [4].

In order to compare two partitions of a software system M from the aspect
mining point of view, we introduce the Definition 5. The definition is based on
the properties of the quality measures defined above ([3]).

8 GABRIELA ŞERBAN AND GRIGORETA SOFIA MOLDOVAN

Definition 5. If K1 and K2 are two partitions of the software system M , CCC
is the set of crosscutting concerns in M and T is a partitioning aspect mining
technique, then K1 is better than K2 from the aspect mining point of view
iff the following inequalities hold:

DIV (CCC,K1) ≥ DIV (CCC,K2), PREC(CCC,K1, T) ≥ PREC(CCC,K2, T),

PAM(CCC,K1) ≤ PAM(CCC,K2).

Remark 1. If at least one of the inequalities from Definition 5 are not satisfied,
we cannot decide which of the partitions K1 or K2 is better.

4.1. Results. In order to evaluate the results of GAAM algorithm, we consider
as case study JHotDraw, version 5.2 ([9]).

This case study is a Java GUI framework for technical and structured graphics,
developed by Erich Gamma and Thomas Eggenschwiler, as a design exercise for
using design patterns. It consists in 190 classes and 1963 methods.

In this subsection we present the results obtained after applying GAAM algo-
rithm described in Subsection 3.2, for the vector space models presented in Section
3, with respect to the quality measures, for the case study presented above.

The results obtained by GAAM are compared with the results obtained by
kAM algorithm proposed in ([4]).

In Table 1 we present the comparative results.

Algorithm Model DIV PREC PAM
GAAM M1 0.844 0.875 0.073
kAM M1 0.842 0.875 0.073

GAAM M2 0.993 0.875 0.073
kAM M2 0.993 0.875 0.081

Table 1. The values of the quality measures for JHotDraw case study.

From Table 1 we observe, based on Definition 5, that GAAM algorithm provides
better results from the aspect mining point of view, than kAM algorithm, for both
vector space models M1 and M2.

Moreover, GAAM with vector space model M2 provides the best results.
We can conclude that vector space model M2 is more appropriate, from the

aspect mining point of view.

5. Conclusions and Future Work

We have presented in this paper a new graph-based approach in aspect mining.
For this purpose we have proposed GAAM algorithm, that identifies a partition
of a software system. This partition will be analyzed in order to identify the
crosscutting concerns from the system.

A GRAPH ALGORITHM FOR IDENTIFICATION OF CROSSCUTTING CONCERNS 9

In order to evaluate the obtained results from the aspect mining point of view,
we have used a set of quality measures.

We have given a definition in order to compare two partitions from the aspect
mining point of view. Based on this definition, we showed that GAAM algorithm
provides better partitions than kAM algorithm (previously introduced in [4]).

Further work can be done in the following directions:

• To apply this approach for other case studies like JEdit ([11]).
• To compare the results provided by GAAM with the results of other

approaches in aspect mining.
• To identify a choice for the threshold distMin that will lead to better

results.
• To improve the results obtained by GAAM, by improving the vector

space model used.
• To determine the distance metric used that will provide better results

from the aspect mining point of view (Minkowski, Manhattan, Hamming,
etc).

• To identify the heuristics for constructing the methods graph that will
lead to better results from the aspect mining point of view.

References

[1] Robillard, M.P., Murphy, G.C., “Concern graphs: finding and describing concerns using
structural program dependencies”, In: Proceedings of the 24th International Conference on
Software Engineering . Orlando, Florida, 2002, pp. 406–416.

[2] Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.,
“Aspect-Oriented Programming”, In: Proceedings European Conference on Object-Oriented
Programming. Volume 1241. Springer-Verlag, 1997, pp. 220–242.

[3] Moldovan, G.S., Serban, G., “Quality Measures for Evaluating the Results of Clustering
Based Aspect Mining Techniques”, In: Proceedings of Towards Evaluation of Aspect Min-
ing(TEAM), ECOOP, 2006, pp. 13–16.

[4] Serban, G., Moldovan, G.S., “A new k-means based clustering algorithm in aspect min-
ing”, In: 8th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC’06), 2006, pp. 60–64.

[5] Moldovan, G.S., Serban, G., “Aspect Mining using a Vector-Space Model Based Clustering
Approach”, In: Proceedings of Linking Aspect Technology and Evolution (LATE) Work-
shop, 2006, to be published.

[6] He, L., Bai, H., “Aspect Mining using Clustering and Association Rule Method” Interna-
tional Journal of Computer Science and Network Security 6, 2006, pp. 247–251.

[7] Shepherd, D., Pollock, L., “Interfaces, Aspects, and Views” In: Proceedings of Linking
Aspect Technology and Evolution (LATE) Workshop, 2005.

[8] Marin, M., van, A., Deursen, Moonen, L., “Identifying Aspects Using Fan-in Analysis” In:
Proceedings of the 11th Working Conference on Reverse Engineering (WCRE2004), IEEE
Computer Society, 2004, pp. 132–141.

[9] JHotDraw Project, http://sourceforge.net/projects/jhotdraw, 1997.
[10] Mancoridis, S., Mitchell, B.S., Chen, Y., Gansner, E.R., “Bunch: A Clustering Tool for

the Recovery and Maintenance of Software System Structures”, In: ICSM ’99: Proceedings

10 GABRIELA ŞERBAN AND GRIGORETA SOFIA MOLDOVAN

of the IEEE International Conference on Software Maintenance, IEEE Computer Society,
1999, pp. 50–59.

[11] jEdit Programmer’s Text Editor: http://www.jedit.org, 2002.
[12] Breu, S., Krinke, J., “Aspect Mining using Event Traces”, In: Proceedings of International

Conference on Automated Software Engineering, 2004, pp. 310–315.
[13] Bruntink, M., van Deursen, A., van Engelen, R., Tourwé, T., “An Evaluation of Clone

Detection Techniques for Identifying Crosscutting Concerns”, In: Proceedings International
Conference on Software Maintenance(ICSM 2004), IEEE Computer Society, 2004.

[14] Ceccato, M., Marin, M., Mens, K., Moonen, L., Tonella, P., Tourwé, T., “A Qualitative
Comparison of Three Aspect Mining Techniques”, In: IWPC ’05, Proceedings of the 13th
International Workshop on Program Comprehension, IEEE Computer Society, 2005, pp.
13–22.

[15] Griswold, W.G., Kato, Y., Yuan, J.J., “AspectBrowser: Tool Support for Managing Dis-
persed Aspects”, Technical Report CS1999-0640, UCSD, 3, 2000.

[16] Hannemann, J., Kiczales, G., “Overcoming the Prevalent Decomposition of Legacy Code”,
In: Advanced Separation of Concerns Workshop,at the International Conference on Soft-
ware Engineering. (ICSE), 2001.

[17] Zhang, C., Gao, G., Jacobsen, H., “Multi Visualizer”,
http://www.eecg.utoronto.ca/ czhang/amtex/.

[18] Sheperd, D., Gibson, E., Pollock, L., “Design and Evaluation of an Automated Apect Mining
Tool”, In: Proceedings of Mid-Atlantic Student Workshop on Programming Languages and
Systems, 2004.

[19] Morales, O.A.M., “Aspect Mining Using Clone Detection”, Master’s thesis, Delft University
of Technology, The Netherlands, 2004.

[20] Tourwé, T., Mens, K., “Mining Aspectual Views using Formal Concept Analysis”, In: Proc.
IEEE International Workshop on Source Code Analysis and Manipulation, 2004.

[21] Tonella, P., Ceccato, M., “Aspect Mining through the Formal Concept Analysis of Execution
Traces”, In: Proceedings of the IEEE Eleventh Working Conference on Reverse Engineering
(WCRE 2004), 2004, pp. 112–121.

[22] Jain, A., Dubes, R., “Algorithms for Clustering Data”, Prentice Hall, Englewood Cliffs,
New Jersey, 1998.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,
Romania

E-mail address: gabis@cs.ubbcluj.ro

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,
Romania

E-mail address: grigo@cs.ubbcluj.ro

