
STUDIA UNIV. BABE��BOLYAI, INFORMATICA, Volume LI, Number 1, 2006

A UNIFORM ANALYSIS OF LISTS BASED ON A GENERAL
NON-RECURSIVE DEFINITION

VIRGINIA NICULESCU

Abstract. The paper presents a general, non-recursive de�nition of lists,
in order to be used as a starting point for a uniform analysis of them. A
general parameterized abstract data type List is de�ned, based on the type
parameter Position, and type parameter TE (the type of elements contained
in the list). By instantiating the parameter Position to the concrete types
Index, SNode and DNode we obtained the abstract data types: IndexedList,
SinglyLinkedList, and DoublyLinkedList. For them di�erent representa-
tions could be considered.

This de�nition that starts from a general parameterized ADT has the
advantage of uniform formal introduction of any type of lists. The presenta-
tion is open to other possible instantiations of Position parameter. In order
to illustrate this, the case of unrolled linked lists is presented.

Also, this approach emphasizes the di�erences between the abstract data
types of linked lists and the linked representation of the structures.

1. Introduction
Lists are very important data structures, which are widely used in computer

science.
A recursive de�nition of an ADT for untyped, and mutable lists, speci�es the

domain as:
List = {l|l is empty ∨ l = (e, l1), where l1 : List ∧ e is an entity}

and the operations:
(1) a constructor for creating an empty list;
(2) an operation for testing whether or not a list is empty;
(3) an operation for prepending an entity to a list (cons in Lisp);
(4) an operation for determining the �rst component (or the �head�) of a list

(car in Lisp);

Received by the editors: March 10, 2006.
2000 Mathematics Subject Classi�cation. 68P05, 68P01.
1998 CR Categories and Descriptors. E.1 [Data]: Data Structures � Lists, stacks, and

queues.

91



92 VIRGINIA NICULESCU

(5) an operation for referring to the list consisting of all the components of
a list except for its �rst (or its �tail�) (cdr in Lisp);

This de�nition is preferred in functional languages, but in imperative program-
ming, in which iteration is preferred to recursion, this de�nition is not so appro-
priate.

Under the imperative paradigm, a list is usually de�ned as an instance of an
abstract data type (ADT) formalizing the concept of an ordered collection of
entities. However, there are a lot of types of list data structures, and also in the
literature could be found di�erent de�nitions for ADT List. Also, the ADTs List
are introduced very often in an informal way. Di�erent implementations of list
data structures are discussed more than a general ATD de�nition for them, and
because of this there is not a uniform approach of the subject in the literature
[2, 4, 5, 6, 7].

In practice, lists are usually implemented using arrays or linked lists of some
sort; due to lists sharing certain properties with arrays and linked lists. Many
times, the term list is used synonymously with linked list. Sequence is another
used name, emphasizing the ordering and suggesting that it may not be a linked
list. However, it is generally assumed that elements can be inserted into a list in
constant time, while access of a random element in a list requires linear time; this
is to be contrasted with an array (or vector), for which the time complexities are
reversed.

Lists have the following properties:

• The contents or data type of lists may or may not vary at runtime.
• Lists may be typed. This implies that the entries in a list must have

types that are compatible to the list base type.
• They may be sorted or unsorted.
• Random access over lists may or may not be possible.
• Equality of lists:

: - In mathematics, sometimes equality of lists is de�ned simply in
terms of object identity: two lists are equal if and only if they are
the same object.

: - In modern programming languages, equality of lists is normally
de�ned in terms of structural equality of the corresponding entries,
except that if the lists are typed, then the list types may also be
relevant.

We propose, in this paper, a formal, general, non-recursive de�nition for a
typed, unsorted ADT List. This could be used, then, as the starting point for a
formal introduction of all the aspects referring to lists.



A UNIFORM ANALYSIS OF LISTS 93

2. ADT List
We consider a list being a collection of elements of the same type (TE), where

each element has a certain position. Each element in a list has a successor element
and a predecessor element in the list, with two exceptions: the �rst element that
has only a successor, and the last element that has only a predecessor.

The constructive approach is used for de�ning abstract data types.
We de�ne a parameterized Abstract Data Type List, with two type parameters:

(i) The type parameter TE, which represents the type of the constitutive
elements, characterized by at least two operations: assign, and equals.

(ii) Position is a type parameter that emphasizes the type of elements' po-
sitions. The instances of the type parameter Position are characterized
by the existence of two operations: next, and prev. The properties of
this type parameter are strictly connected to the type List. Knowing a
position of an element in a list, we have, based on the list de�nition, to
be able to extract the element stored at that position, and to compute
successor and predecessor elements in the list.

Domain
List(Position, TE) = {l|l is a list of elements of type TE,

in which each element has a position of type Position}
Operations:

(1) createEmpty(l)
pre: true
post: l : List and l is empty

(2) length(l)
pre: l : List
post: result = the number of the elements of the list l

(3) getF irstPosition(l)
pre: l : List

post: result =
{ ⊥, l is empty list

p, p : Position is the �rst position in the non-empty list l

(4) getLastPosition(l)
pre: l : List

post: result =
{ ⊥, l is empty list

p, p : Position is the last position in the non-empty list l

(5) valid(l, p)
pre: l : List and p : Position

post: result =
{

true, if p is a valid position in l
false, otherwise



94 VIRGINIA NICULESCU

(6) addFirst(l, e)
pre: l : List and e : TE
post: l

′
= (e, l)

(7) insert(l, p, e)
pre: l : List and p : Position and e : TE and valid(p, l)
post: l

′ is the list l after inserting e on the next position of p

(8) delete(l, p)
pre: l : List and p : Position and valid(p, l)
post: l

′ is the list l after removing the element on the position p

(9) next(l, p)
pre: l : List and p : Position and valid(p, l)

result =
{

the next position of p, if p is not the last position
⊥, if p is the last position

(10) prev(l, p)
pre: l : List and p : Position and valid(p, l)

post: result =
{

the previous position of p, if p is not the �rst position
⊥, if p is the �rst position

(11) getElement(l, p)
pre: l : List and p : Position and valid(p, l)
post: result = the element e at the position p and e : TE

(12) setElement(l, p, e)
pre: l : List and p : Position and valid(p, l) and e : TE
post: the element at the position p is equal to e

(13) iterator(l)
pre: l : List
post: result = iterator of type ListIterator on the list l

We have used the notation ⊥ for the unde�ned position, which is a special value
of Position type. (The unde�ned position is always not valid, but a value which is
not valid for a list does not have to be equal to ⊥.) In the formal speci�cation of an
operation with parameter l, l

′ denotes l after the execution of that operation. We
consider ListIterator, the type of a bidirectional �Read-Write� iterator on lists,
characterized by the following operations (beside the creational operations):

(1) valid(it, l)
pre: l : List and it : ListIterator

post: result =
{

true, if it indicates no element in the list l
false, otherwise



A UNIFORM ANALYSIS OF LISTS 95

(2) next(it, l)
pre: l : List and it : ListIterator and valid(it, l)
post: it

′ indicates the next position of that indicated by it

(3) prev(it, l)
pre: l : List and it : ListIterator and valid(it, l)
post: it

′ indicates the previous position of that indicated by it

(4) element(it, l)
pre: l : List and it : ListIterator and valid(it, l)
post: result = e, where e is the element indicated by it

(5) insert(it, l, e)
pre: l : List and it : ListIterator and e : TE and valid(it, l)
post: l

′ is l after inserting e on the next position of that indicated by it

(6) delete(it, l)
pre: l : List and it : ListIterator and valid(it, l)
post: l

′ is l after removing the element on the position indicated by it

Since insert and delete operations are de�ned for ListIterator, a list could also
be modi�ed using an iterator. More restrictive iterator types could be considered,
too.

The position of one element in the list allows us to obtain the element, and it
may be given either by giving the index of the element in the list, or by given a
reference to the location where that element is stored.
So, possible choices for Position are:

(1) Index = {i|i ∈ N}
The resulted lists are characterized by the
ADT List(Index, TE) = IndexedList(TE).

(2) SNode = {(e, n)|e : TE ∧ n : ref(SNode)}
The resulted lists are characterized by the
ADT List(ref(SNode), TE) = SinglyLinkedList(TE).

(3) DNode = {(p, e, n)|e : TE ∧ n, p : ref(DNode)}
The resulted lists are characterized by the
ADT List(ref(DNode), TE) = DoublyLinkedList(TE).

The notation ref(Type) speci�es a type of references to values of type Type.
The types ref(SNode) and ref(DNode) use the value null (it could be a null
pointer or a null reference to an entry into an array) for specifying ⊥, and the
type Index could use the value 0 for the same purpose.



96 VIRGINIA NICULESCU

By choosing concrete instances of type Position we obtain abstract data types,
which are parameterized only by the elements' type TE. For an ADT like this,
we may choose di�erent representations of the values of the domain List and
corresponding implementations of the operations. So, di�erent list data structures
are obtained.

Other instantiations for Position may be considered. For example, for a un-
rolled linked or chunk list that is a linked list in which each node contains an array
of data values, the Position could be de�ned as a reference to the type

ArrayNode = {(A, next,max, ind)|
A : Array(TE) ∧ next : ref(ArrayNode) ∧max, ind ∈ N∗}

where max represents the number of the elements stored in the node, and ind
represents the current position into the node. The unrolled linked lists increase
the cache performance while decreasing the memory overhead for references.

3. IndexedList

IndexedLists are characterized by the fact that elements are accessed directly
by their indices. The internal representation of the lists is independent of their
interface, so we may considere an array representation, but also a linked represen-
tation for IndexedList.

If we consider that the lists are represented using a dynamic array (its size is
not constant) of elements of type TE, we obtain a list data structure in which
direct access to the elements is possible in an O(1) time, but delete and insert
operations need each O(n) time. Usually, this data structure is called ArrayList
or Sequence.

Another possibility to implement IndexedList is based on a linked representa-
tion. In this case, each element is placed in a node that contains not only the value
of the element, but also a pointer to the node that contains the next element in
the list; in a doubly linked representation, a pointer to the node that contains the
previous element in the list is stored, too. This representation of the IndexedList
does not improve the time complexity of the operations insert and delete, since the
positions are still referred to by indices. The improvement could be obtained if the
insertions and deletions are done using an iterator, and not using the operations
of the interface.

The majority languages de�nes in their collection libraries implementations of
the ADT IndexedList. This is the case of Java [3], where the interface List corre-
sponds to the interface of IndexedList, and the classes ArrayList and LinkedList
are implementations of this. Therefore, the class LinkedList has not the type that
corresponds to a linked list since its interface is an IndexedList interface. Only,
its representation is a linked one. The same situation there is in C++, in STL
library [8].



A UNIFORM ANALYSIS OF LISTS 97

The IndexedList ADT is preferred to be implemented, since its interface does
not contain parameters of type pointer or reference, which may bring some prob-
lems.

4. LinkedList

We will treat together the ADT SinglyLinkedList and ADT DoublyLinkedList
since their problems are similar.

The positions, in this case, are expressed by the addresses where the elements
are stored, and the elements are accessible through them. For representation, we
may consider both static and dynamic linked allocation.

Dynamic linked allocation is based on nodes that contains the element's value
and pointers to the node of the next element (and to the previous element, for the
DoublyLinkedList). A representation for SinglyLinkedLists may use a pointer to
the �rst node, and a representation for DoublyLinkedLists may use two pointers
to the �rst and last nodes.

For DoublyLinkedLists, the insert and delete operations take O(1) time, fact
that corresponds to the general meaning of lists.
Another advantage of DoublyLinkedLists is that an easy reverse traversal is pos-
sible.

In the SinglyLinkedList case, insert operation also takes O(1) time. But
delete operation takes O(n) time, because it has to compute the previous position
of the element to be deleted, and the prev operation takes O(n) time, in this case.

Static linked storage means that not dynamically allocation is used, but an
associative array. For SinglyLinkedLists each entry of the associative array con-
tains a value of type TE and a link to the sucessor element. Inside an array the
reference(address) of an element is given by its index, so in this case a link is
expressed as an index. The free space is also managed as a linked list. In the
DoublyLinkedList case, an entry of the associative array also contains a link to
the predecessor element.

5. Lists with Cursor
For each ADT List, a representation with a cursor could be chosen. In this case,

a current position is stored (in the cursor) for any list, so the Position parameter
p of the operations: insert, delete, next, prev, getElement, and valid, is included
in the List parameter.

This representation is not common for indexed lists, but it brings some advan-
tages for linked lists. The complexity of the operations is not in�uenced by the
storing of this current position, but the advantage is given by the fact that the
user has not direct access to the addresses where the elements are stored, and so
the information is better protected. For linked lists, this cursor acts as an iterator
on that list.



98 VIRGINIA NICULESCU

6. Conclusions
There are a lot of de�nitions of lists in literature, and they are very often

informally de�ned. We have presented in this paper a formal de�nition for a general
ADT List, from which specialized ADTs List are obtained by instantiation of the
type parameter used for specifying positions in lists. The discussed ADTs, which
are obtained after Position instantiation are IndexedList, SinglyLinkedList, and
DoublyLinkedList. This analysis that starts from a general parameterized ADT
has the advantage of a uniform formal introduction of any type of lists. The
presentation is open to other possible instantiations of Position parameter.

This formal and general de�nition of lists emphasizes very clearly the di�er-
ences between an indexed list (in which elements are referred to by using their
number into the list) implemented in a linked way (as LinkedList in Java), and an
implementation of ADT LinkedList.

Acknowledgment: This general and formal de�nition of lists was developed
after long and interesting discussions that I had with Gabriela Serban referring to
Data Structures Course. I am grateful for her suggestions and observations.

References
[1] Aho, A. V., Data Structures and Algorithms. Addison-Wesley, 1983.
[2] Amsbury,W., Data Structures - From Arrays to Priority Queues. 1985.
[3] Arnold, K., Holmes, D., Gosling, J., The Java Programming Language. Addison-Wesley,

2000.
[4] Horowitz, E, Sartaj Sahni, Fundamentals of Data Structures in C++. Computer Science

Press, New York, 1995.
[5] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., Introduction to algorithms, sec.

ed. MIT Press 2001.
[6] Mount, D. M., Data Structures, University of Maryland, 1993.
[7] Standish, T.A.,Data Structures, Algorithms and Software Principles. Addison-Wesley, 1994.
[8] Musser, D.R., Scine A., STL Tutorial and Reference Guide: C++ Programming with Stan-

dard Template Library, Addison-Wesley, 1995.

Department of Computer Science, Babe³-Bolyai University, Cluj-Napoca
E-mail address: vniculescu@cs.ubbcluj.ro


