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BROAD PHONETIC CLASSES EXPRESSING SPEAKER
INDIVIDUALITY

MARGIT ANTAL, GAVRIL TODEREAN

Abstract. Vector quantisation and Gaussian mixture modelling methods
are very popular methods for automatic speaker identification. First we give
a concise overview of these methods, then present some measurements com-
paring them on behalf of the TIMIT corpus. The aim of this paper is to study
the influence of the speech material on performances of such methods. For
this purpose pure phonetic speaker models were created containing speech
data from a single broad phonetic class. The speaker discriminative prop-
erty of these pure phonetic speaker models had been investigated. Among
the broad phonetic classes nasals and vowels were found to be particularly
speaker specific.
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1. Introduction

A variety of signals and measurements have been proposed and investigated for
use in biometric recognition systems. Among the most popular measurements are
fingerprint, face and voice. There are two main reasons for using voice instead
of other measurements. First, there is a well-developed infrastructure for speech
signal transmission which can be accessed almost everywhere using a cell phone.
Second, speech is the most natural way of communication, therefore is not intrusive
for users to provide speech sample for authentication.

Speaker recognition is the process of recognising the speaker on the basis of
information obtained from speech waves. Speaker recognition can be divided into
speaker identification and speaker verification. While speaker identification is a
classification problem performed on a closed set of speakers, speaker verification
is a binary decision, determining whether an unknown voice is from a particular
enrolled speaker. If the speaker is recognised based on unconstrained speech, the
system is called text-independent. However, text constrains can greatly improve
the accuracy of a system. A great overview of speaker recognition systems can be
found in [10].
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The special recognition task addressed in commercial systems is that of veri-
fication rather than identification. In spite of that, for this project, we chose to
confine our experiment to the task of closed-set identification rather than speaker
verification. The motivation for doing so was to measure the classification capa-
bility of the system without having to consider the effect of different background
model normalisation schemes required for the verification task.

The majority of research papers focuses on feature extraction and selection
methods or classifier combinations for obtaining higher identification rates rather
than on analysing the content of speaker models. Flanagan’s group in [9] selectively
used the speech spectrum for speaker identification and found that the higher
portion of the speech spectrum contains more reliable idiosyncratic information
on the speaker.

The aim of this paper is to investigate the discriminative properties of several
broad phonetic classes in this special pattern classification problem, the speaker
identification. Previous works in this field using other speaker models were done
in [8, 4]. While in [4] a well-known French speech database was used, in [8] the
authors worked on a private English database. No similar results were reported
on TIMIT database.

Section 2 briefly presents the speaker modelling techniques. In Section 3 we
review the main characteristics of the broad phonetic classes. Section 4 presents
experiments on speaker identification using different types of features and models
trained with broad phonetic classes. Section 5 presents statistical analysis of the
content of a VQ based speaker model. Finally, in Section 6 we discuss the results
and draw the main conclusions of our paper.

2. Speaker models

Over the past several years, Gaussian mixture models have become the domi-
nant approach for modelling in text-independent speaker recognition applications
[19]. However, in special cases, simpler speaker models could perform similarly
well or even better. One simpler model is the vector quantisation (VQ) model,
which was investigated in several papers [5, 20]. Other papers compare the GMM
and VQ models drawing conclusions based on measurements on different speech
databases [21, 16]. Recently the two methods have been successfully combined
resulting in the VQGMM method [9].

According to Jain et al. [11], CA (Clustering Algorithm) is the organisation
of a collection of patterns, represented as multidimensional feature vectors, into
clusters based on similarity. Patterns within a valid cluster are more similar to
each other than they are to a pattern belonging to a different cluster. Vector
Quantisation is not so much interested in finding the clusters, but in representing
the data by a reduced number of elements that approximate the original data set
as well as possible. We can say that in many cases CA and VQ are practically
equivalent, grouping the data into a certain number of groups, so that an error
function is minimised.

2.1. Vector Quantisation - VQ. The objective of VQ is the representation of
a set of feature vectors X = {x1, x2, . . . , xN} ⊆ RD by a set Y = {y1, y2, . . . , yM},
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of M reference vectors in RD. Y is called codebook and its elements codewords.
VQ can be represented as a function q : X → Y. The function q permits us to
obtain a partition S of X constituted by M subsets Si, where each cell Si has the
form

(1) Si = {x ∈ X : q(x) = yi}, i = 1, . . . , M.

We measure the goodness of partitioning by the means of quantisation er-
ror(MQE), which can be defined as follows

(2) MQE =
1
M

M∑

i=1

Di, where Di =
∑

xj∈Sj

d(xj , yi)

where d is the Euclidean distance defined in RD.
V Q can be done using different quantisation algorithms. The simplest one is

the LBG algorithm [15], which was recently enhanced into ELBG in [17]. All
variants of LVQ introduced by [14] can be applied equally well. All the clustering
algorithms developed by Artificial Intelligence researchers might work as well. A
comparison of several clustering algorithms used in speaker identification was done
in [13, 2].

2.2. Gaussian Mixture Models - GMM. Finite mixture is a flexible and pow-
erful probabilistic tool. Mixtures can also be seen as a class of models that are
able to represent arbitrarily complex probability density functions.

For a D−dimensional feature vector, x, the mixture density used for the likeli-
hood function is defined as

(3) p(x|λ) =
M∑

i=1

wipi(x)

The density is a weighted linear combination of M unimodal Gaussian densities,
pi(x), each parameterised by a mean vector µi, and a covariance matrix, Σi

(4) pi(x) =
1

(2π)D/2|Σi|1/2
e−

(x−µi)
T Σ−1

i
(x−µi)

2

The mixture weights, wi, satisfy the constraint
∑M

i=1 wi = 1. A GMM model
can be denoted as

(5) λ = {wi, µi, Σi}, i = 1, . . . ,M.

Given a collection of training vectors, the expectation-maximisation (EM) [7] al-
gorithm can be used to estimate the model parameters. This algorithm iteratively
refines the GMM parameters in order to monotonically increase the likelihood of
the estimated model for the observed feature vectors.

A new parameter estimation method was proposed in paper [9]. The paper
proposes to cluster the whole acoustic space into several subspaces. Within a
subspace, the feature vectors are relatively more homogeneous. Each subspace is
then characterised by a number of Gaussian mixture models whose parameters are
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Table 1. Corpus division

Dataset Utterances Length
training 2 SA, 3 SX, 3 SI 24.5s
test 2 SX 6.06s

determined using only those relevant acoustic features belonging to the subspace.
This means that feature vectors far from the subspace are not used to estimate
model parameters for that subspace.

3. Phonetic classes

The basic theoretical unit for describing how speech conveys linguistic meanings
is called a phoneme. Each phoneme can be considered to be a code that consists
of a unique set of articulatory gestures. These articulatory gestures include the
type and location of sound excitation, as well as the position of movement of the
vocal tract articulators. There are some phonetic alphabets in use. European
phoneticians developed the International Phonetic Alphabet (IPA), which is ap-
propriate for handwritten transcription but its main drawback is that it cannot
be typed on a conventional typewriter or a computer keyboard. Therefore, a more
recent phonetic alphabet was developed by the United States Advanced Research
Projects Agency (ARPA), and is accordingly called ARPAbet.

There are a variety of methods for classifying phonemes. Phonemes can be
grouped based on properties related to the time waveform or frequency character-
istics. A phoneme is continuant if the speech sound is produced by a steady-state
vocal-tract configuration. A phoneme is non continuant if a change in the vocal-
tract configuration is required during production of the speech sound. Vowels,
fricatives, affricates, and nasals are all continuant sounds. Diphthongs, liquids,
glides, and stops all require a vocal-tract reconfiguration during production. An
exhaustive study of these classes can be found in the following books [18, 6]. In
our study liquids and stops are grouped together forming the semivowels group.

Experiments were performed on the TIMIT corpus, which is phonetically seg-
mented and annotated using the ARPAbet symbols. For broad phonetic classes we
used those recommended in TIMIT corpus documentation, which are the follow-
ing: Vowels, Semivowels, Nasals, Stops, Fricatives, Affricates, Silence+Closures.
The speech corpus consists of 10 spoken utterances from 630 speakers covering
the 8 major dialect regions of the United States. Table 1 shows the speech corpus
division in training and test utterances and table 2 shows the average length of
speech material for each broad phonetic class. There is no point of making speaker
models from silence and we could not use the affricates, their average length were
not enough to train the models.

4. Speaker Identification Experiments

All the experiments were conducted on the TIMIT speech corpus, using all 630
speakers for speaker identification.
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Table 2. Broad phonetic classes and their training and test length

Phonetic class Phonemes Training length Test length
Vowels iy,ih,eh,ey,ae,aa,aw 9.66s 2.27s

ay,ah,ao, oy,ow,uh,uw
ux,er,ax,ix,axr,ax-h

Semivowels l,r,w,y,hh,hv,el 2.38s 0.47s
Nasals m,n,ng,em,en,eng,nx 1.34s 0.38s
Fricatives s,sh,z,zh,f,th,v,dh 3.28s 0.95s
Stops b,d,g,p,t,k,dx,q 1.43s 0.35s
Affricates jh,ch 0.20s 0.09s
Silence+Closures pau,epi,h# 6.28s 1.55s

bcl,dcl,gcl,pcl,tck,kcl,dcl,tcl

Before segmenting the signal into frames, a filter was applied to enhance the
high frequencies of the spectrum. We used the following filter:

xp(t) = x(t)− a ∗ x(t− 1)

where a = 0.97.
The analysis of speech signal was done locally by the application of a window

whose duration in time is shorter than the whole signal. This window is first
applied to the beginning of the signal, then moved further and so on until the
end of the signal is reached. For the length of the window we used 32ms with
22ms of overlapping between consecutive frames. Each frame was multiplied by
a Hamming window in order to taper the original signal on the sides and thus
reduce the side effect. After these steps we extracted cepstral parameters from
each frame. In the following experiments we used two types of cepstral features,
MFCC and LPCC. The detailed description of these features can be found in [3]

4.1. VQ and GMM comparison. For these speaker identification experiments
we used LPCC features, which performed slightly better than the MFCC ones.
Both VQ and GMM models were trained with 32 components. For VQ we used
the LBG algorithm and the GMM models were initialized by the mean vectors
provided by the LBG algorithm. The weights were set to be equal. We used
diagonal covariance matrices initialised with the identity matrix. The standard
ML estimation of the parameters was used with 10 iterations.

The results are summarised in Table 3. We used the training-test division
presented in Table 1.

Similar results were reported for the case of GMM in [19] and for VQ in [12] ,
all measured on the same speech corpus and using cepstral features.

4.2. Phonetic pure GMM. The aim of these experiments is to determine the
speaker discriminative phonetic broad classes. Table 4 summarises the identifi-
cation rates obtained for the phonetic broad classes. The amount of data used
for training and test is presented in Table 2. In these experiments we used 12
MFCC parameters. The number of mixture’s density components were selected
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Table 3. Speaker identification results using all the 630 speakers
from TIMIT

Features VQ-LBG GMM
LPCC-12 97.40% 98.26%
LPCC-16 99.05% 99.05%
LPCC-20 99.30% 99.70%
LPCC-24 100.% 99.85%

Table 4. Speaker identification rates for 630 speakers using pure
phonetic GMMs

Phoneme class Training Test Mixtures Id. rate
Vowels 9.65s 2.27s 8 95.39%
Nasals 1.34s 0.38s 1 70.31%
Fricatives 3.27s 0.95s 4 44.60%
Semivowels 2.38s 0.47s 4 41.74%
Stops 1.43s 0.35s 4 10.47%
All 24.55s 6.06s 32 96.20%

carefully, running several times the classification for different number of mixtures
and selecting the one, which gives the best result.

The result obtained for the vowels is amazing. This means that using homoge-
neous data, which represents only 40% of the whole training data, we could almost
reach the performance of the models using all training data. Another impressive
result was produced by the nasals group, which represents approximately 5-6% of
the whole speech data.

The results summarised in Table 4 are representative for the TIMIT database
but are not comparable due to the variety of training and test time. For a correct
ranking of the discriminative effects of the broad phonetic classes on speaker iden-
tification, we limited all training data to 1.5s and the test data to 0.5s for every
speaker. For every classification we used a GMM with two density components.
Table 5 ranks the identification rates obtained in similar training and test condi-
tions for broad phoneme classes. We included for comparison a similar test using
all phonetic classes, 1.5s training and 0.5s test data. We can see that limiting the
training and test material seriously affected vowels and fricatives.

5. Phonetic content of speaker models

In this section we are going to analyse the phonetic content of V Q based speaker
model. This model consists of a set of clusters. Eeach cluster is represented by
its centroid, which is chosen as a prototype of its cluster. Our goal is to verify
how well the broad phonetic classes are separated in this type of speaker model.
We selected several speakers and made a statistical analysis of the content of their
models. Our analysis has the following steps:
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Table 5. Identification rates for 630 speakers using in average
1.5s training and 0.5s test data and a GMM model with 2 density
components

Phonetic class Id. rate
Nasals 64.92%
Vowels 20.31%
Semivowels 19.73%
Fricatives 11.42%
Stops 10.15%
All 12.38%

(1) First, we obtained the feature vectors from all audio data belonging to
the selected speaker. We excluded the feature vectors for silence, because
these vectors do not contain speaker specific data. Let us denote this set
by X = {x1, x2, . . . , xT }, where xi ∈ RDand D is the dimensionality of
the feature space.

(2) In the second step we labeled each feature vector with its broad phonetic
class label. Let us denote by Y = {(xi, fi) | i = 1, 2, . . . T} the resulted
set, where fi ∈ F. F = {A, F, S, W, V, N} is the set of broad phonetic
class labels. Label A denotes the affricates, F is for fricatives, S is the
symbol for stop phonemes, W and V denote the semivowels and vowels
and N stands for nasals.

(3) Using these labeled feature vectors we applied the V Q algorithm and
obtained the M clusters, whose content we analysed statistically.

Figure 1 shows the distribution of broad phonetic classes in the M = {2, 3, 4, 5, 6}
clusters created by the clustering algorithm. We repeated the clustering using up
to 6 clusters in order to be able to capture the broad phonetic classes separation
tendency. We stopped at 6, because there are altogether 6 broad phonetic classes.

The left top figure shows that if we use only two clusters, the first one will
be populated by affricates, fricatives and stops and the second one by vowels,
semivowels and nasals. This clustering tendency is explainable by the acoustical
similarities between these broad phonetic groups. The affricates group is the least
numerous one, and these phonemes are always situated in the same cluster together
with the vast majority of fricatives and a representative part of the stop broad
phonetic group.

Analysing the last figure, in which we used exactly six clusters, we can see that
the vast majority of affricates, fricatives and nasals are concentrated in one cluster
and only a small amount are spread among other clusters. Because we used all
frames from phonemes, some of these frames are situated at the boundaries of
phonemes, not being very representative for any broad phonetic class.

This experiment shows that a speaker model does not separate perfectly the
broad phonetic classes. It is also true that every broad phonetic group has its own
specific clusters. The bigger the acoustic variety inside a broad phonetic group
the more clusters are spread among the feature vectors belonging to these groups.
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Broad phonetic class Variance
Affricates 23.22
Fricatives 47.35
Stops 37.85
Semivowels 46.76
Vowels 41.33
Nasals 20.53

Table 6. Variances of broad phonetic classes

The acoustic variety of a broad phonetic group can be characterized by the
variance of the group. The higher this variance the more powerful the separating
tendency of the group. We computed for each speaker model the variances of
the broad phonetic classes. For this experiment we used the training part of the
TIMIT speech corpus (462 speakers). Table 6 shows the average values of these
variances. The higher the speaker discriminating ability of a broad phonetic group,
the lower the variance of this class in a speaker model.

6. Conclusions

The main purpose of this paper was to compare the relative speaker discriminat-
ing properties of broad phonetic classes. For this purpose pure phonetic speaker
models were created. We found that the pure phonetic speaker models using
exclusively vowels, almost reached the performance of models using the whole
speech data from a speaker. We should mention that the vowels represent 40% of
the whole corpus. We also found that when pure phonetic speaker models were
trained using the same amount of training data, the nasals produced the best iden-
tification rate. We can conclude that for a very good speaker model one should
use speech materials which contain as much nasals as possible. Another conclu-
sion is that the phonetic content of the training speech material is more important
than its quantity. We have also studied the distribution of broad phonetic classes
in the components of speaker models. We showed that the clusters of a speaker
model are not phonetically pure. However, every broad phonetic class has its spe-
cific components. We showed experimentally that nasals have the best speaker
discriminating ability and also the lowest variance per speaker.

Part of this work was published in [1].
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