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NONLINEAR EVOLUTIONARY SUPPORT VECTOR
MACHINES. APPLICATION TO CLASSIFICATION
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Abstract. Support vector machines are a modern and very efficient learning

heuristic. However, their internal engine relies on not very easy or common

mathematical concepts. The paper presents a newly developed simpler de-

sign of the engine, built through the means of evolutionary computation, in

the context of nonlinear support vector machines. Experiments are carried

on fictitious 2-dimensional points data sets and demonstrate once again the

promise of the new approach.
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1. Introduction

Support vector machines (SVMs) are a type of learning machines [9]. Ac-
cording to [6], ”support vector machines are a system for efficiently training linear
learning machines in kernel-induced feature spaces, while respecting the insights
of generalization theory and exploiting optimization theory”.

As all learning machines, SVMs act in two stages. In the training stage, the
correspondence between every input vector and given output is internally discov-
ered and learnt. In the test step, prediction of the output for previously unknown
input vectors is performed according to what has been learnt.

SVMs have been successfully applied to a wide range of pattern recognition
problems. Interest in present paper is shown however only in what concerns clas-
sification.
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The task for SVMs here is then to achieve an optimal separation of data into
classes. By resorting to evolutionary algorithms, authors propose a simpler alter-
native to the standard approach of SVMs to solving this optimization problem.

Initially, SVMs were developed for linearly separable data and were later im-
proved to handle nonseparable cases as well. Consequently, the new technique,
called evolutionary support vector machines (ESVMs), has followed the same steps.
Linear separating hyperplanes for separable and nonseparable data were detected
through evolutionary computation in [11, 12]. The last and most difficult step, i.e.
the discovery of the optimal nonlinear hyperplane to deal with nonseparable data,
is treated in present paper. The data sets that experiments are conducted on are
fictitious 2-dimensional points sets.

The paper is structured as follows. Section 2 presents an overview of support
vector machines for classification. Section 3 outlines the idea and structure of evo-
lutionary support vector machines; values for parameters of both the evolutionary
algorithm and the support vector machine are appointed and conducted experi-
mental results are illustrated. Finally, some conclusions are reached and ideas for
future work are discussed.

2. Principles of support vector machines

In standard manner, support vector machines deal with binary classifica-
tion problems. They have, however, been extended to handle multi-class catego-
rization. The new evolutionary support vector machines are built according to the
classical binary situation; in the future, ESVMs will also be broadened to cover
the multi-class circumstances. Consequently, in what follows, the concepts within
SVMs will be explained on binary labelled data [3, 10].

Suppose the training data is of the following form:

(1) {(xi, yi)}i=1,2,...,m

where every xi ∈ Rn represents an input vector and each yi an output (label).
Let us first suppose that the two subsets of input vectors labelled with +1 and

−1, respectively, are linearly separable. The positive and negative training vectors
are then separated by the hyperplane:

(2) 〈w, x〉 − b = 0,

where w ∈ Rn is the normal to the hyperplane, b ∈ R and |b|
‖w‖ is the distance

from the origin to the hyperplane.
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Accordingly, two data subsets are linearly separable iff there exist w ∈ Rn and
b ∈ R such that:

(3)

{
〈w, xi〉 − b > 0, yi = 1,

〈w, xi〉 − b < 0, yi = −1, i = 1, 2, ..., m.

According to [1], two data subsets are linearly separable iff there exist w ∈ Rn

and b ∈ R such that:

(4)

{
〈w, xi〉 − b > 1, yi = 1,

〈w, xi〉 − b < −1, yi = −1, i = 1, 2, ..., m.

Consequently, the separating hyperplane lies in the middle of the parallel support-
ing hyperplanes of the two classes.

Following the structural risk minimization principle [13, 14, 15], i.e. one gets
that, in order to generalize well, the support vector machine must provide a hy-
perplane that separates the training data with as few errors as possible and, at
the same time, with a maximal margin of separation. One subsequently obtains
the optimization problem (P1):

(5)

{
find w and b as to minimize ‖w‖2

2 ,

subject to yi(〈w, xi〉 − b) ≥ 1, i = 1, 2, ..., m.

where 2
‖w‖ is the value of the margin.

Given a training data set that is nonseparable, it is obviously not possible to
build a separating hyperplane without any classification errors. However, construc-
tion of an optimal hyperplane that minimizes misclassification would be of interest
[8]. Previous ideas can be extended to handle this new situation by relaxing the
constraints in (4). This can be achieved by bringing in some positive variables,
called slack variables [4]. The introducing of these new variables relies on the fact
that any training data point has a deviation from its supporting hyperplane, i.e.
from the ideal condition of data separability, of ±ξi

‖w‖ . This affects the separation
condition, which then becomes [4]:

(6) yi(〈w, xi〉 − b) ≥ 1− ξi, i = 1, 2, ..., m

where ξi ≥ 0. Thus, for a training data point to be erroneously classified, its
corresponding ξi must exceed unity.
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Simultaneously with (6), sum of misclassifications must be minimized. As a
consequence, (P1) changes to (P2):

(7)





find w and b as to minimize ‖w‖2
2 + C

∑m
i=1 ξi,

subject to yi(〈w, xi〉 − b) ≥ 1− ξi,

ξi ≥ 0, i = 1, 2, ..., m.

where C corresponds to assigning higher penalties for errors.
The concepts can be extended even further to the construction of a nonlinear

separating hyperplane for nonseparable data. Based on [5], the training data can
be nonlinearly mapped into a high enough dimensional space and linearly separated
there.

Suppose an input vector is mapped into some Euclidean space, H, through a
mapping Φ : Rn 7→ H. It can be easily seen that within (P2) vectors in Rn appear
only as part of dot products. Vectors in H should appear as part of dot products
in its formulation, as well. Therefore, the equation of the separating hyperplane
in H becomes:

(8) 〈Φ(w), Φ(xi)〉 − b = 0

where Φ(w) is the normal to the hyperplane.
The squared norm

(9) ‖w‖2 = 〈w, w〉
changes to

(10) 〈Φ(w), Φ(w)〉.
Now, if there were a kernel function K such that:

(11) K(x, y) = 〈Φ(x),Φ(y)〉
where x, y ∈ Rn, one would use K in the training algorithm and would never

need to explicitly even know what Φ is.
At this moment, the question is what kernel functions meet (11). The answer

is given by Mercer’s theorem from functional analysis [2]. The problem is that
it may not be easy to check whether Mercer’s condition is satisfied in every case
of a new kernel. There are, however, a couple of classical kernels that had been
demonstrated to meet Mercer’s condition [2]:

• Polynomial classifier of degree p: K(x, y) = 〈x, y〉p
• Radial basis function classifier: K(x, y) = e

‖x−y‖2
σ
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Consequently, the optimization problem (P2) will now change to (P3):

(12)





find w and b as to minimize K(w,w)
2 + C

∑m
i=1 ξi,

subject to yi(K(w, xi)− b) ≥ 1− ξi,

ξi ≥ 0, i = 1, 2, ...,m.

3. Design of nonlinear evolutionary support vector machines

The optimization problem in support vector machines is standardly solved using
concepts of convexity and resorting to an extension of the well-known method of
Lagrange multipliers. The mathematics of the method can be found to be difficult.

Authors have brought the ESVM alternative to this technique, which is very
easy to understand and apply. Standard evolutionary algorithms are used in this
respect.

In present work, nonlinear ESVMs are outlined only. Linear ESVMs for sepa-
rable and nonseparable data are particular situations of proposed algorithm; how-
ever, they can be found in [11, 12], respectively.

The way in which components of the evolutionary algorithm are considered with
respect to nonlinear support vector machines is outlined. Experimental results are
reached and illustration of the separation is given for different fictitious 2D points
data sets appointed in order to obtain three nonlinear separating hyperplanes, i.e
odd or even polynomial and radial classifiers.

3.1. Components of the evolutionary algorithm. Components regard repre-
sentation, initialization of the population, expression of the fitness function, the
selection and variation operators.

Representation
A chromosome has the following structure of w, b and ξ:

(13) c = (w1, ..., wn, b, ξ1, ...., ξm)

Proposed evolutionary algorithm thus includes the training errors in the struc-
ture of the chromosome. In the end of the algorithm, the training points that
are correctly placed will have the corresponding ξis less than unity, while those
erroneously placed will have their ξis exceed it.

Initial population
Chromosomes are randomly generated following a uniform distribution, such

that wi ∈ [−1, 1], i = 1, 2, ..., n, b ∈ [−1, 1] and ξj ∈ [0, 1], j = 1, 2, ..., m.
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Fitness evaluation
The expression of the fitness function is considered as follows:

(14)

f(c) = f(w1, ..., wn, b, ξ1, ..., ξm) = K(w, w)+C

m∑

i=1

ξi+
m∑

i=1

[t(yi(K(w, xi)−b)−1+ξi)]2,

where

(15) t(a) =

{
a, a < 0,

0, otherwise.

One is led to minimize(f(c), c).

Genetic operators
Tournament selection is used. Intermediate crossover and mutation with nor-

mal perturbation are considered. Mutation is restricted only for errors, preventing
the ξis from taking negative values.

Stop condition
The algorithm stops after a predefined number of generations. In the end, it

obtains the equation of the hyperplane, i.e. w and b. Errors on training set also
result from the algorithm, i.e. those corresponding to ξi > 1, i = 1, 2, ..., m

3.2. Experimental results. Three fictitious 2-dimensional points data sets were
built in order to allow construction of an even polynomial classifier, an odd one and
a radial decision function. Illustration of their configurations and of the obtained
nonlinear hyperplanes is given in Figures 1, 2 and 3.

Values for the specific parameters of every chosen kernel are given in turn in
Table 1. The parameters of the support vector machine and of the evolutionary
algorithm that are common to all kernels had the same values in all three cases
and are outlined in Table 2. Some abbreviations are used therein, i.e. ps stands
for population size, ng for number of generations, cp for crossover probability, mp
for mutation probability, ms for mutation strength.

Degree odd polynomial 15
Degree even polynomial 14

Sigma 500
Table 1. Values for parameters of the chosen kernels
C ps ng cp mp mp - ξis ms ms - ξis
1 200 1000 0.3 0.5 0.5 0.1 0.1
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Figure 1. An odd polynomial classifier

Table 2. Values for parameters of the support vector machine and of the
evolutionary algorithm

4. Conclusions and future work

From the discussion above, there arise various advantages in using evolutionary
support vector machines instead of the classical architecture:

1. The evolutionary approach is much easier for both the developer and the
end user.

2. The evolutionary solving of the optimization problem leads to the obtaining
of w and b directly, while in the classical approach the equation of the optimal
hyperplane is determined after Lagrange multipliers are found.

3. Moreover, in the case of the classical technique, when using kernels in which
Φ cannot be explicitly obtained, it is not possible to determine w and b at all - it
can only predict the class for a test vector.

4. The evolutionary method can also provide which training data cannot be
correctly classified, as errors are included in the structure of the chromosomes; the
evolutionary support vector machines self-determine their training error.
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Figure 2. An even polynomial classifier

Future work envisages application and validation of proposed ESVMs to real-
world problems. Also, the design of evolutionary multi-class support vector ma-
chines, based on classical SVM approaches to classification with more than two
categories, is desired.
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Figure 3. A radial polynomial classifier
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