
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 2, 2005

A NEW APPROACH IN FRAGMENTATION OF DISTRIBUTED
OBJECT ORIENTED DATABASES USING CLUSTERING

TECHNIQUES

ADRIAN SERGIU DARABANT

Abstract. Horizontal fragmentation plays an important role in the design
phase of Distributed Databases. Complex class relationships: associations,
aggregations and complex methods, require fragmentation algorithms to take
into account the new problem dimensions induced by these features of the
object oriented models. We propose in this paper a new method for hori-
zontal partitioning of classes with complex attributes and methods, using AI
clustering techniques. We provide quality and performance evaluations us-
ing a partition evaluator function and we prove that fragmentation methods
handling complex interclass links produce better results than those ignoring
these aspects.

1. Introduction

As opposed to centralized databases where the design phase handles only logi-
cal and physical data modeling, the design process in Distributed Object Oriented
Databases involves as well data partitioning and allocation to the nodes of the sys-
tem. Horizontal fragmentation, in Object Oriented Database Systems, distributes
class instances into fragments. Each object has the same structure and a different
state or content. Thus, a horizontal fragment of a class contains a subset of the
whole class extension. Horizontal fragmentation is usually subdivided in primary
and derived fragmentation.

Many of the existing Object Oriented (OO) fragmentation approaches are usu-
ally inspired from the relational fragmentation techniques. While this proves to
be a good starting point for approaching the fragmentation problem, there is defi-
nitely a limit in applying these techniques to data models featuring all the complex
characteristics of a real OO model. The OO model is inherently more complex
than the relational model. Inheritance, polymorphism, class aggregation and asso-
ciation all induce complex relations between classes in an object oriented database.
In order to cope with the increased complexity of the OO model, one can divide
class features as follows: simple attributes – attributes with scalar types; complex
attributes – attributes with complex types (other classes), sets, bags, etc. as their

Received by the editors: December 5, 2005.

91

92 ADRIAN SERGIU DARABANT

domain; simple methods – methods accessing only local class simple attributes;
complex methods - methods that return or refer instances of other classes.

In this paper we approach the horizontal fragmentation problem of classes with
complex attributes and methods. We rely on AI clustering as an alternative to
the current state of the art fragmentation techniques derived from the relational
approaches.

1.1. Related Work. Fragmentation methods for OODB environments, or flat
data models have been generally considered in Karlapalem [1], [4], [5], Ezeife
[2]. Ravat [6] uses the Bond Energy Algorithm (BEA) for vertical and horizontal
fragmentation. Ezeife [7] presents a set of algorithms for horizontally fragmenting
models with simple attributes/methods and complex attributes/methods. She
is using the algorithm developed for horizontal fragmentation in relational data
models. Bellatreche et al. [9] propose a method that emphasizes the role of queries
in the horizontal fragmentation.

We have already discussed an alternative AI clustering fragmentation method
for OO models with simple attributes and simple methods in [12].

1.2. Contributions. We propose a new technique for horizontal fragmentation in
object-oriented databases with complex attributes and methods. Fragmentation in
complex OO hierarchies is usually performed in two steps: primary fragmentation
and derived fragmentation. Primary fragmentation groups class instances accord-
ing to a set of class conditions [12] imposed on their simple attributes. Derived
fragmentation takes into account the class relationships (aggregation, association,
complex methods). It groups instances of a class in fragments according to the
fragmentation of the related classes. There are generally two approaches in de-
rived fragmentation: left order derived fragmentation (parent first) and right order
derived fragmentation (child first). They differ in the order in which two related
classes are fragmented. In the left order derived fragmentation, the referring class
is fragmented first and determines a partitioning of the instance set of the referred
class. In the right order derived fragmentation, the referred class is fragmented
first and determines the partitioning of the instances of the referring class.

We propose an algorithm that unifies the two fragmentation steps: primary
and derived into a single step. Both class conditions and class relationships are
modeled together in a vector space. Each object is represented as a vector and we
use the k-means clustering algorithm for separating clusters (fragments) of objects.

The paper is organized as follows. The next section of this work presents the
object data model and the constructs used in defining the object database and
expressing queries. Section 3 introduces the vector space model we use to compare
objects, methods for constructing the object characteristic vectors and similarity
metrics over this vector space. Section 4 presents our fragmentation algorithm.
In section 5 we present a complete fragmentation example over a class hierarchy

FRAGMENTATION OF DISTRIBUTED OBJECT ORIENTED DATABASES 93

and we evaluate the quality of our fragmentation scheme by using a variant of the
Partition Evaluator [12].

2. Data Model

We use an object-oriented model with the basic features described in the litera-
ture [8], [11]. Object-oriented databases (OODB) represent data entities as objects
supporting features like inheritance, encapsulation, polymorphism, etc. Objects
with common attributes and methods are grouped into classes. A class is an or-
dered tuple C=(K, A,M, I), where A is the set of object attributes, M is the set
of methods, K is the class identifier and I is the set of instances of class C. Every
object in the database is uniquely identified by an object identifier (OID). Each
class can be seen in turn as a class object. Class objects are grouped together
in metaclasses. This allows us to consider classes as being instances of higher-
level classes that describe the database schema. This way the database schema is
self-describing.

Classes are organized in an inheritance hierarchy, in which a subclass is a spe-
cialization of its superclass. Although we deal here, for simplicity, only with simple
inheritance, moving to multiple inheritance would not affect the fragmentation al-
gorithm in any way, as long as the inheritance conflicts are dealt with into the
data model. An OODB is a set of classes from an inheritance hierarchy, with all
their instances. There is a special class Root that is the ancestor of all classes in
the database. Thus, in our model, the inheritance graph is a tree.

An entry point into a database is a metaclass instance bound to a known variable
in the system. An entry point allows navigation from it to all classes and class
instances of its sub-tree (including itself). There are usually more entry points in
an OODB.

Given a complex hierarchy H, a path expression P is defined as C1.A1. . . .An,
n≥1 where: C1 is an entry point in H, A1 is an attribute of class C1, Ai is an
attribute of class Ci in H such that Ci is the domain of attribute Ai−1 of class Ci1

(1≤ i ≤ n). In the general case, Ai can be a method call. If i<n, then Ai must
return a single complex type value (an object).

As presented in [12], a query is a tuple with the following structure q=(Target
class, Range source, Qualification clause), where:

• Target class – (query operand) specifies the root of the class hierarchy
over which the query returns its object instances;

• Range source – a path expression starting from an entry point and spec-
ifying the source class hierarchy;

• Qualification clause – logical expression over the class attributes and/or
class methods, in conjunctive normal form. The logical expression is
constructed using atomic predicates: path expression θ value where θ ∈
{<,>,≤,≥, =, 6=,∈,⊃,⊇}.

94 ADRIAN SERGIU DARABANT

3. Vector Space Modeling

3.1. Primary Fragmentation Modeling. We denote by Q ={q1 ,. . . , qt} the
set of all queries in respect to which we want to perform the fragmentation. Let
Pred={p1, . . . , pq} be the set of all atomic predicates Q is defined on. Let
Pred(C)={p ∈Pred | p imposes a condition to an attribute of class C or to an at-
tribute of its parent}. Given the predicate p ≡ C1.A1. . . .An θ value, p∈Pred(Cn),
if class Ci is the complex domain of Ai−1, i = 2..n, and An has a complex type or
simple type.

Given two classes C and C ′, where C ′ is subclass of C, Pred(C ′) ⊇Pred(C).
Thus the set of predicates for class C ′ comprises all the predicates directly imposed
on attributes of C ′ and the predicates defined on attributes of its parent class C
and inherited from it [12].

We construct the object-condition matrix for class C, OCM(C) = {aij , 1 ≤
i ≤ |Inst(C)|, 1 ≤ j ≤ |Pred(C)|}, where Inst(C) = {O1, . . . Om} is the set of all
instances of class C, Pred(C) = {p1, . . . , pn}:

aij =
{

0, if pj(Oi) = false
1, if pj(Oi) = true

(1)

wij =
1
m

∑

l=1..m,alj=aij

[(alj |alj = 1) + (1− alj |alj = 0)]

Each line i in OCM (C) is the object-condition vector of Oi, Oi ∈Inst(C).
We obtain from OCM (C) the characteristic vectors for all instances of C. The
characteristic vector for object Oi is wi = (wi1, wi2, . . . , w in), where each wij is the
ratio between the number of objects in C respecting the predicate pj ∈ Pred(C) in
the same way as Oi, and the number of objects in C. We denote the characteristic
vector matrix as CVM (C) [12].

3.2. Attribute Induced Derived Fragmentation Modeling. We have cap-
tured so far all characteristics of simple attributes and methods. We need to
express the class relationships in our vector space model. We first model the
aggregation and association relations.

Given two classes CO (owner) and CM (member), where CM is the domain of
an attribute of CO, a path expression traversing this link navigates from instances
of CO to one or more instances of CM . In the case of left derived fragmentation
CO will be fragmented first, followed by CM . In the right derived fragmentation
variant the order in which the two classes are fragmented is reversed. Each of the
two strategies is suitable for different query evaluation strategies. For example, in
reverse traversal query evaluation strategy, the right derived fragmentation variant
gives the best results. We assume here, for space reasons, that right derived

FRAGMENTATION OF DISTRIBUTED OBJECT ORIENTED DATABASES 95

fragmentation method is used. However, both: the algorithm and the vector
space model remain the same when considering left derived fragmentation order.

Thus, in right derived fragmentation method, when fragmenting CO we should
take in account the fragmentation of CM [13]. We want to place in the same
fragment of CO objects aggregating instances from a fragment of CM . Objects
of a fragment of CO should aggregate as much as possible objects from the same
fragment of CM .

Let {F1, . . . Fn} be the fragments of CM . We denote by Agg(Oi, Fj)={Om |
Om∈F j , Oi references Om}. Given the set of fragments for CM , we define the
attribute-link induced object-condition vectors for derived fragmentation as ad i =
(ad i1, ad i2, . . . , ad in), where each vector component is expressed by the following
formula:

(2) adij = sgn(|Agg(Oi, Fj)|), j = 1, n

For an object Oi ∈Inst(CO) and a fragment Fj of CM , ad ij is 1 if Oi is linked
to at least one object of Fj and is 0 otherwise.

Given the set of fragments for CM , we define the attribute-link induced charac-
teristic vectors for derived fragmentation as wad i = (wad i1, wad i2, . . . , wad in),
where each vector component is expressed by the following formula:

(3) wadij =
|{Ol ∈ Inst(CO)|sgn(|Agg(Ol, Fj)|) = sgn(|Agg(Oi, Fj)|)}|

|Inst(CO)| , j = 1, n

Each wad ij component gives the percentage of objects in CO that aggregate/refer
in the same way as Oi objects from Fj . Two objects Oi and Ol are said to aggre-
gate Fj in the same way if they are both either linked or not linked with objects
from Fj . According to this criterion, two objects are candidates to be placed in
the same fragment of CO in respect to Fj if they are both related in the same way
to Fj .

3.3. Method Induced Derived Fragmentation Modeling. In the following
paragraphs we model the class relationships induced by the presence of complex
methods. Given a class with complex methods C(owner) that has to be frag-
mented, we need to take in account, when fragmenting it, the fragmentation of
classes referred by its complex methods. In order to model the method refer-
ence dependencies in the fragmentation process we need to express this type of
relationships in our vector space.

We denote by MetComplex (C)={mi| mi complex method of C} – the set of all
complex methods of class C.
Let SetCRef(m, C) = {CR|C 6= CR, CR is referred by method
m ∈ MetComplex(C)} be the set of classes referred by the complex method

96 ADRIAN SERGIU DARABANT

m of class C. For a given instance of a class C with complex methods we denote
as:
SetORef (m,Oi, CR)={O′

r∈Inst(CR) | CR∈SetCRef (m, C), m ∈ MetComplex(C),
O
′
r is referred by method m} – the set of instances of class CR,referred by the com-

plex method m of class C.
For each pair (mk, CR) ∈ {mk ∈ MetComplex(C)} × SetCRef(mk, C) we

quantify the way each instance of C refers - through complex methods - instances
from fragments of CR. Given a class CR referred by a complex method mk of
class C, and the fragments of class CR → {F1, . . . Fn}, we define the method-link
induced object-condition vectors for derived fragmentation. For each instance Oi of
C let md i= (md i1, md i2, . . . , md in) be the method-link induced object-condition
vector. Each vector component is defined by the following formula:

(4) mdij = sgn(|{Ol ∈ Inst(CR)|Ol ∈ Fj ∩ SetORef(mk, Oi, CR)}|), j = 1, n

Each md ij evaluates to 1 when object Oi∈Inst(C) refers objects from fragment
Fj of class CR and 0 otherwise. For each object Oi we obtain, for each pair
(mk, CR), one method-link induced object-condition vector. We derive from it the
method-link induced characteristic vector for derived fragmentation, wmd j =(wmi1,
wmd i2,. . . ,wmd in), where:

(5) wmdij =
|{Ol ∈ Inst(C)|mdlj = mdij}|

Inst(C)
, j = 1, n , l = 1, |Inst(C)|

Each wmd ij quantifies the way objects of class C refer objects from fragments
of Cj through complex methods.

When modeling relationships induced by the presence of complex methods, we
obtain as many referring condition vectors (object-condition and characteristic),
for each instance Oi of C, as the number of elements of the Cartesian product
{mk ∈ MetComplex(C)} × SetCRef(mk, C).

3.4. Derived Fragmentation Modeling. As the number of elements in {mk ∈
MetComplex(C)}×SetCRef(mk, C) is usually large we need to use some heuris-
tics in order to retain only the pairs with significant impact in the fragmentation.
In order for a pair (mk, CR) to be kept it should satisfy the following combined
restrictions:

• The number of calls to the method mk should be significant compared
to the contribution brought by all method calls made by applications
running on the database;

• The number of instances of CR referred by the method mk should be
significant compared to the number of instances of all classes generally
referred by the applications.

FRAGMENTATION OF DISTRIBUTED OBJECT ORIENTED DATABASES 97

The above conditions are expressed in the following formula (significance fac-
tor):

Sig(mk, CR) =
NrCalls(mk)∑

ml∈MetComplex(C)

NrCalls(ml)
(6)

×

∑
Oi∈Inst(C)

|SetORef(mk, Oi, CR)|
∑

Cp∈SetCRef(mk)

∑
Or∈Inst(C)

SetORef(mk, Or, Cp)

In (6) the first factor gives the ratio between the number of calls to method mk

and the number of calls of all complex methods of class C. The second factor gives
the ratio between the number of CR instances referred by mk and the number of all
objects referred by mk. In reality the actual method parameters would normally
influence the set of objects referred by the method. Even more, the set of referred
objects could be as well influenced by the internal state of the object. However,
tracking all the possible combinations is computationally intractable – even in
simple situations. The statistical heuristic proposed in (6) is still manageable and
helps reducing the problem space dimensions.

Usually, the fragmentation of a class C is performed in two steps: primary frag-
mentation, according to query conditions, and derived fragmentation, according to
the fragments of the member or owner classes. We merge the two phases into one
single step capturing the semantic of both primary and derived fragmentations.
For this we unify the characteristic vector, the attribute-link and method-link in-
duced characteristic vectors for each object Oi of the class C, and we obtain the
extended characteristic vector. Each extended characteristic vector quantifies all
the information needed for fragmentation: the conditions imposed on the object
and the relationships of the object with instances of related classes, induced either
by complex attributes or by complex methods.

If the class C is related with classes CA1, CA2,. . . , CAp by means of complex
attributes, and with classes CM1, CM2, . . . , CMr by means of complex methods,
the extended characteristic vector wei for object Oi ∈ Inst(C) is obtained by
appending the p attribute-link induced characteristic vectors and the number of
mc = |{mk ∈ MetComplex(C)} × SetCRef(mk, C)| method-link characteristic
vectors to the characteristic vector of Oi. However, as we have already mentioned
above, we are using the significance factor to filter out non-relevant pairs (mk, CR)
and vectors derived from them. As observed experimentally, a significance factor
around 0.27 will filter out most of the inappropriate (mk, CR) pairs.

The extended object-condition vector aei for an object Oi is obtained in the same
way by appending its attribute-link and method-link induced object-condition
vectors to its object-condition vector. We denote by EOCM (C) and ECVM (C)
the extended object-condition and characteristic matrices for class C.

98 ADRIAN SERGIU DARABANT

3.5. Similarity between Objects. The aim of our method is to group into a
cluster those objects that are similar to one another. Similarity between objects
is computed using the Euclidian and Manhattan metrics:

(7) dE(wei, wej) =

√√√√
n∑

k=1

(weik − wejk)2 , dM (wei, wej) =
n∑

k=1

|weik − wejk|

Given two objects Oiand Oj , we define two similarity measures between them
in (8):

(8) simE(Oi, Oj) = 1− dE(wei, wej)
|Inst(C)| , simM (Oi, Oj) = 1− dM (wei, wej)

|Inst(C)|
We use simE and simM in (8) to measure how similar two objects are. Both

measures take values in [0,1] and are expressed using one of the two distances
from (7). The distance functions and the similarity measures are inversely pro-
portional in [0,1]. As the distance between two objects increases, their similarity
decreases. We should note that all characteristic vectors have positive coordinates
by definition.

4. K-means Centroid-based Fragmentation

We apply an algorithm we have used to fragment classes with simple attributes
and methods: the k-means centroid based clustering algorithm [12]. The classical
k-means algorithm takes the input parameter k and partitions a set of m objects
into k clusters so that the resulting intra-cluster similarity is high but the inter-
cluster similarity is low. Cluster similarity is measured in regard to the mean value
of the objects in a cluster, which can be viewed as the cluster’s center of gravity
(centroid). First, the k-means algorithm randomly selects k of the objects, each
of which initially represents a cluster mean or center. For each of the remaining
objects, an object is assigned to the cluster to which is the most similar, based on
the distance between the object and the cluster centroid. It then computes the
new centroid for each cluster and redistributes all objects according to the new
centroids. This process iterates until a criterion function converges. The criterion
tries to make the resulting k clusters as compact and separate as possible.

Our version of the algorithm improves several aspects of the original algorithm
with regard to the semantic of object fragmentation. First of all, we implement
a variant where we choose as initial centroids the most representative objects
in respect with fragmentation predicates, rather than choosing them arbitrarily.
At each iteration, if an object should be placed in any of several clusters (same
similarity with the centroid), we choose the cluster to which the object has max-
imum similarity with. We also choose as criterion function the degree of com-
pactness/homogeneity H of all clusters. For a given cluster F , this value is the

FRAGMENTATION OF DISTRIBUTED OBJECT ORIENTED DATABASES 99

difference between the maximum and minimum similarity of all pairs of objects in
F :

(9) H(F) = max{sim(a, b) ∈ F × F, a 6= b} −min{sim(a, b) ∈ F × F, a 6= b}
Algorithm k-meansFrag is:
Input: Class C, Inst(C) to be fragmented, the similarity function
sim : Inst(C) × Inst(C) → [0, 1],m = |Inst(C), 1 < k ≤ m desired number of
fragments, OCM(C), CV M(C), threshold value.
Output: the set of clusters F = {F1, . . . , Ff}, where f ≤ k.
Begin

Centr={c1, . . . , ck}=InitCentr(Inst(C), OCM(C), CVM(C), k);
F = {Fi|Fi = {ci}, ci ∈ Centr, i = 1..k};F ′

= ∅;
// initial object allocation to clusters;
For all objects Oi do

Fcandidates = {argmaxcentr(sim(Oi, cl), l = 1..k)};
Fu∗ = argmaxsim(sim(Oi, fc), fc ∈ Fcandidates); Fu∗ = Fu∗ ∪ {Oi};

End For;
While F

′ 6= F and H(F)<threshold value do
For all Fi ∈ F recalculate centroid ci;
F
′
= F;

For all objects Oi do
Fcandidates = {argmaxcentr(sim(Oi, cl), l = 1..k)}; (i)
Fu∗ = argmaxsim(sim(Oi, Fc), Fc ∈ Fcandidates); (ii)
F
′
v = F

′
v − {Oi}, where Oi ∈ F

′
v;

F
′
u∗ = F

′
u∗ ∪ {Oi};

F
′
= F

′ − {F ′
l |F

′
l = ∅}; // eliminate empty clusters

End For;
End While;

End.

Function InitCentr(Inst(C),OCM(C),CVM(C),k) is
Begin

Centr=∅; n = |Pred(C)|;
For i=1 to k do

ci = argmin[dM (OCM(Oj), ui)], Oj /∈ Centr, i ≤ n; (iii)
ci = argmin(sim(Oj , Centr)), Oj /∈ Centr, i > n; (iv)
Centr = Centr ∪ {ci};

End for;
Return Centr;

End Function;

100 ADRIAN SERGIU DARABANT

Function InitCentr chooses the initial centroids as described above. In line (iii)
ui is the identity vector of degree i, which has 1 only on the ith position and
0 on the other positions. Each ui represents the corresponding predicate from
Pred(C). Line (iii) chooses as centroid the closest object to ui, i.e. the most
representative object for that predicate. We note that we can choose this way as
many centroids as the number of predicates in Pred(C). If we need more clusters
than |Pred(C)|, we choose as their initial centroids the objects most dissimilar to
the already chosen centroids (line (iv)). We try this way to minimize the impact
of “losing” clusters in the following iterations. This occurs when all objects in a
cluster relocate to other clusters because the initial centroid is not semantically
representative to our set of predicates.

We use in lines (i) and (ii) the similarity of an object Oi with a cluster Fc,
defined as (the average similarity with all objects of the cluster):

(10) sim(Oi, Fc) =

∑
a∈Fc

sim(Oi, a)

|Fc|

5. Results and Evaluation

In this section we illustrate the experimental results obtained by applying our
fragmentation scheme on a test object database. Given a set of queries, we first
obtain the horizontal fragments for the classes in the database; afterwards we
evaluate the quality and performance of the fragmentation results. The problem
with the evaluation method is that it is difficult to quantify a fragmentation result
without allocating the fragments to the nodes of a distributed system. On the
other side, the allocation problem must be solved in order to be able to evaluate
the fragmentation. As resolving the allocation problem in the general case is not
a trivial task, we need a simplified allocation model, yet a valid one. Our solution
is to consider a distributed system running database applications (queries). Some
of the nodes are part of the distributed object oriented DBMS as well. They
hold fragments of the database and a database engine. All applications run with
different frequencies on different nodes of the system. We chose to allocate each
fragment on the node where is most needed (accessed).

Another issue that might affect the results is the fact that the order in which
classes are fragmented is significant as it captures the semantic of query path
expressions into the fragmentation process [13]. It might be possible to obtain
better results by using a different order for fragmenting classes. We do not handle
here the ordering problem, but we address it in [13].

The sample object database represents a reduced university database. The
inheritance hierarchy is given in Figure 1 and a trimmed down version of the
aggregation/association graph is shown in Figure 2.

The queries running on the classes of the database are given bellow:

FRAGMENTATION OF DISTRIBUTED OBJECT ORIENTED DATABASES 101

Figure 1. The database class hierarchy

Figure 2. The database aggregation/association graph

q1 =(Grad, Faculty.Dept.Student, Grad.Supervisor.OrgUnit.Name in (“ProgMeth”, “In-
fSyst”))
q2 =(UnderGrad, Faculty.Dept.Student, UnderGrad.Dept.Name like “CS%”
and UnderGrad.Grade between 7 and 10)
q3 =(UnderGrad, Faculty.Dept.Student, (UnderGrad.Dept.Name like “Math%” or
UnderGrad.Dept.Name like “CS%”) and UnderGrad.Age()≥24)
q4 =(Researcher, Doc.Person, Researcher.count(Reasercher.doc) ≥2)
q5 =(Prof, Faculty.OrgUnit.Employee, Prof.OrgUnit.Name in (“ProgMeth”, “InfSyst”)
and Prof.salary≥40000)
q6 =(Prof, Doc.Person., Prof.Paper.Publisher in (“IEEE”, “ACM”) and Prof.Position =
“prof”)
q7 =(TechReport, Doc, TechReport.year>1999)
q8 =(Set(Student.Dept), Person, Student.Grade<5)
q9 =(Employee, Person, Employee.salary>35000)
q10 =(Grad, Person, Grad.count(Grad.Paper)≥1)
q11 =(Student, Person,Student.Dept.Name like “CS%”)
q12 =(Student, Person,Student.Dept.Name like “Math%”)

102 ADRIAN SERGIU DARABANT

q13 =(Staff, Person, Staff.salary>12000)
q14 =(Person, Person, Person.Age()>30)

In Figure 2 the links between Doc and Person should be inherited by all subclasses
of Person and Doc. This is graphically represented in the figure by the dotted arrows.
Similar inherited links are present for other classes in this graph (links not represented
here). The motivation for aggregation/association inheritance is presented in [13].

For measuring the fragmentation quality we determine the cost of remote accesses
combined with the cost of local irrelevant accesses to each fragment. Remote accesses
are made by applications running on a given node and accessing objects that are not
stored on that node. Local irrelevant accesses are given by local processing incurred
when a query accesses a fragment. Each access to a fragment implies a scan to determine
objects that satisfy a condition. Irrelevant local access measure the number of local
accesses to objects that will not be returned by the query. Intuitively, we want that each
fragment be as compact as possible and contain as much as possible only objects accessed
by queries running on the fragment’s node. We use the following measure for calculating
the fragmentation quality:

(11) PE(C) = EM2 + ER2

(12) EM2(C) =

MX
i=1

TX
t=1

freq2
ts∗ |Accit| ∗

�
1− |Accit|

|Fi|
�

(13) ER2(C) =

TX
t=1

min

(
SX

s=1

MX
i=1

freq2
ts ∗ |Accit| ∗ |Accit|

|Fi|

)

The EM term calculates the local irrelevant access cost for all fragments of a class. ER
calculates the remote relevant access cost for all fragments of a class. Accit represents
the set of objects accessed by query t from fragment Fi. The value freqts is the frequency
of query t running on site s. In (12) s is the site where Fi is located, while in (13) s is any
site not containing Fi. M is the number of clusters for class C, T is the number of queries
and S is the number of sites [12]. The fragmentation is better when the local irrelevant
costs and the remote relevant access costs are smaller. Each term of PE calculates in
fact the average square error of these factors. Globally, PE measures how well fragments
fit the object sets requested by queries.

Using the given query access frequency, the fragments above are allocated to 4 dis-
tributed sites. Query frequency at sites is presented in Table 1.

We qualitatively compare the results of our fragmentation method with a centralized
and a full replicated database in Figure 3. The centralized version of the database is
allocated to node S1, while in the replicated case each node holds a copy of the entire
database. It can be seen that our fragmented database obtains smaller PE costs, with
both measures, than the centralized and full replicated database. The full replicated
case obtains the worst costs as the irrelevant access cost explodes in this case. Even
though remote accesses tend to zero in the replicated case, the local irrelevant accesses
increase considerably as each node holds an entire copy of the database, thus many

FRAGMENTATION OF DISTRIBUTED OBJECT ORIENTED DATABASES 103

Table 1. Access frequencies of queries at distributed sites

Freq(q,s) S1 S2 S3 S4

q1 0 10 5 20

q2 0 10 5 25

q3 20 0 15 10

q4 15 10 5 0

q5 25 20 0 20

q6 30 0 20 10

q7 30 25 0 10

q8 10 0 0 10

q9 20 20 10 0

q10 15 25 0 0

q11 5 10 5 0

q12 0 0 0 10

q13 15 0 0 5

q14 20 5 0 0

irrelevant objects for each query. In reality, the full replicated case performs well only
when there are no updates to the database. The Manhattan similarity measure applied on
OCM obtains the best results, followed by Manhattan similarity applied on characteristic
vectors and by the Euclid measure at last.

In Figure 4 we present the PE costs induced on each fragmented class with each
method. Here it can be seen that the Manhattan and Euclid measures behave approx-
imately the same on all classes except Undergrad. In our example, classes have been
fragmented in the order they appear in Figure 4, from left to right, Undergrad being the
last fragmented class. Even if PE scores for other classes are approximately the same –
the resulting fragments are not identical for different similarity measures.

This leads to the fact that when fragmenting Undergrad, the resulting fragments are
influenced by the fragmentation of the related classes. Manhattan applied on OCM does
the best fragmentation on the intermediate (related) classes, which leads to a better score
when the last class (Undergrad) is fragmented.

Finally in Figure 5 we compare the results of the same fragmentation algorithm in
two cases: when complex class relationships are considered and when complex class
relationships are ignored, i.e primary only fragmentation. The P-Euclid, P-Manhattan
Charact. Vect. and P-Manhattan Obj. Conditions denote the primary only versions of
the fragmentation algorithm.

It can be seen that the fact of considering the complex class relationships improves
quality. All similarity measures in this case behave better than the best case of the
fragmentation without derived fragmentation.

6. Conclusions and Future Work

We proposed in this paper a new horizontal fragmentation method for object oriented
distributed databases. Our method takes into account all complex relationships between

104 ADRIAN SERGIU DARABANT

Figure 3. Comparative PE values for our fragmentation
method, centralised and replicated databases

classes: aggregations, associations, and links induced by complex methods. Primary
and derived fragmentations are modeled together and are performed in a single step.
This reduces the complexity of our technique compared to traditional approaches that
perform primary and derived fragmentation in two distinct steps, processing twice the
entire database.

We have shown that taking complex relationships into account significantly improves
fragmentation quality as opposed to methods considering only primary fragmentation.
The order in which classes are fragmented is important as class relationships may induce
mutual transitive class dependencies. There is always a fragmentation order that pro-
duces better results than the average of all other orders. We proposed an algorithm for
determining the fragmentation order in [13].

We aim to find new ways of expressing inter-class relationships and compare their
results and impact in the fragmentation process.

References

[1] Karlapalem, K., Navathe, S.B., Morsi, M.M.A.: Issues in distribution design of object-
oriented databases. In: Tamer Ozsu, M., Dayal, U., Valduriez, P. (eds.): Distributed Object
Management, Morgan Kaufmann Publishers (1994) 148-164

[2] Ezeife, C.I., Barker, K.: A Comprehensive Approach to Horizontal Class Fragmentation
in a Distributed Object Based System, International Journal of Distributed and Parallel
Databases, 3(3) (1995) 247-272

FRAGMENTATION OF DISTRIBUTED OBJECT ORIENTED DATABASES 105

Figure 4. Comparative class PE values for each similarity measure

Figure 5. Comparative PE values for primary only fragmenta-
tion and our complex fragmentation method (primary + derived
fragmentation)

[3] Han, J., Kamber, M., Data Mining: Concepts and Techniques, The Morgan Kaufmann
Series in Data Management Systems (2000)

106 ADRIAN SERGIU DARABANT

[4] Karlapalem, K., Li, Q.: Partitioning Schemes for Object-Oriented Databases, In Proceedings
of the Fifth International Workshop on Research Issues in Data Engineering-Distributed
Object Management, Taiwan (1995) 42–49

[5] Karlapalem, K., Li, Q., Vieweg, S.: Method Induced Partitioning Schemes in Object-
Oriented Databases, In Proceedings of the 16th Int. Conf. on Distributed Computing System
(ICDCS’96), Hong Kong (1996) 377–384

[6] Ravat, S.: La fragmentation d’un schema conceptuel oriente objet, In Ingenierie des systemes
d’informaton (ISI), 4(2) (1996) 161–193

[7] Ezeife, C.I., Barker, K.: Horizontal Class Fragmentation for Advanced-Object Modes in a
Distributed Object-Based System, In the Proceedings of the 9th International Symposium
on Computer and Information Sciences, Antalya, Turkey (1994) 25-32

[8] Bertino, E., Martino, L.: Object-Oriented Database Systems; Concepts and Architectures,
Addison-Wesley (1993)

[9] Bellatreche, L., Karlapalem, K., Simonet, A.: Horizontal Class Partitioning in Object-
Oriented Databases, In Lecture Notes in Computer Science, volume 1308, Toulouse, France
(1997) 58–67

[10] Savonnet, M. et. al.: Using Structural Schema Information as Heuristics for Horizontal
Fragmentation of Object Classes in Distributed OODB, In Proc IX Int. Conf. on Parallel
and Distributed Computing Systems, France (1996) 732-737

[11] Baiao, F., Mattoso, M.: A Mixed Fragmentation Algorithm for Distributed Object Oriented
Databases, In Proc. Of the 9th Int. Conf. on Computing Information, Canada (1998) 141-148

[12] Darabant, A. S., Campan, A.: Semi-supervised learning techniques: k-means clustering in
OODB Fragmentation, IEEE International Conference on Computational Cybernetics ICCC
2004, Vienna University of Technology, Austria, August 30 - September 1 (2004) 333-338

[13] Darabant, A.S, Campan, A.: Optimal Class Fragmentation Ordering in Object Oriented
Databases, In Studia Universitatis Babes Bolyai Informatica, Volume XLIX, Number 1
(2004) 45-54

Babes-Bolyai University, Cluj-Napoca, Romania
E-mail address: dadi@cs.ubbcluj.ro

