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ON TUBULAR SURFACES IN COMPUTER GRAPHICS

PAUL A. BLAGA

Abstract. We propose new approaches to the investigation of tubular and

canal surfaces, regarded as swept surfaces, we give a parametric representa-
tion of the inverse of a canal surface and we suggest several applications of

tubular surfaces in scientific vizualization.

1. Introduction

Tubular surfaces are among the surfaces which are easier to describe both an-
alytically and “operationally”. They are still under active investigation, both for
finding best parameterizations (see, for instance, [9, 11]) or for application in dif-
ferent fields (for instance in medicine, see [6]).

We remind that, if C is a space curve, a tubular surface associated to this curve
is a surface swept by a family of spheres of constant radius (which will be the radius
of the tube), having the center on the given curve. Alternatively, as we shall see
in the next section, for them we can construct quite easily a parameterization
using the Frenet frame associate to the curve. The tubular surfaces are used
quite often in computer graphics, but we think they deserve more attention for
several reasons. For instance, there is the problem of representing the curves
themselves. Usually, the space curves are represented by using solids rather then
tubes. There are, today, several very good computer algebra system (such as
Maple, or Mathematica) which allow the vizualisation of curves and surfaces, in
different kind of representations. However, the graphical output they produce is
not always of the best quality and it is, definitely, useful to be able to export
the graphic in a format which is recognized by a professional software, such as
RealStudio, or AutoCad, which, in turn, have superior rendering possibilities.
Unfortunately, the DXF format, for instance, is based on meshes, therefore, for
instance, if one produces a graphic containing both curves and surfaces, the curves
will be “lost in translation” when the graphic is exported as a DXF file. The
situation would be different, of course, if one would be able to choose to represent
the curves as tubes, rather then solids. Another problem is related to the flexibility.
Usually, the softwares for graphing curves and surfaces come equipped with a given
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set of thickness for the curves and it is not possible to prescribe the thickness of
the curve at will. Moreover, if the space curves are represented as tubes, this helps
also the intuition, it is possible to use different effects (shadow, transparency, etc.).
It would be possible even to use the tubular surface for graphing the wireframe
of a surface. There is, of course, a price that we have to pay: the speed. It
is, clearly, more expensive to represent a curve as a tubular surfaces than to
representing using solids. However, this problem can be partially solved using
spline approximations. Moreover, this is really a problem only for the interactive
visualization and it should be always possible to use the “tube approach” only
when the “still” graphics is produces.

The aim of this paper is to discuss propose new approaches to the the tubular
and canal surfaces (which, as we shall see, are natural generalization of tubu-
lar surfaces), providing explicit representation of them as swept surfaces as well
as parameterization of the surfaces obtained by their transformation by inver-
sion. Finally, we suggest some possible application of tubular surfaces in scientific
vizualisation (for differential geometry and topology).

We mention that all the figures from the paper have been realized by using
the C++ graphical library Open Geometry, based on OpenGL, elaborated at the
Technical University of Wien by G. Glaeser and H. Stachel (see [8] for a recent
survey).

2. Tubular surfaces

We shall give here the mathematical description of tubular surfaces associated
to space curves. For all the geometrical notions, see [3].

Definition 2.1. Let r : I → R3 be a smooth, regular space curve. The tubular
surface associated to r, of radius a, is, by definition, the envelope of the family of
spheres of radius a, with the center on the curve (see figure 2).

Remark 2.1. Clearly, if r is a straight line, then the tubular surface of radius a
associated to it is just the circular cylinder of radius a, having r as symmetry axis.
If, on the other hand, r is a circle, then the corresponding tubular surface is a
torus.

We shall assume, hereafter that r is biregular, in other words, along the curve
the following condition is fulfilled: r′(t)× r′′(t) 6= 0. We notice that this condition
do not hold for straight lines. Then, to each point of the curve, we can associate
the Frenet frame, i.e. the frame {τ ,ν,β} formed by the following three vectors
(see [3]):

(i) τ =
r′

‖r′‖
– the unit tangent vector;

(ii) β =
r′ × r′′

‖r′ × r′′‖
– the unit binormal vector;



ON TUBULAR SURFACES IN COMPUTER GRAPHICS 83

Figure 1. Tubular surfaces as envelopes of spheres

Figure 2. The torus as a tubular surface

(iii) ν = β × τ – the unit principal normal vector.
Now, it is easy to see that the contact between the spheres from the family and
the tubular surface is a great circle of the sphere, lying in the normal plane of the
generating curve. Let us describe, then, a very simple method of parameterization
of the tubular surface. Take the parameter along the generating curve to be one
of the parameters and denote by R the position vector of a point on the surface.
As we mentioned earlier, this point lies in the normal plan to the generating curve
at a point t. On the other hand, it lies on a circle of radius a, situated in this
plan, with the center at the point r(t) from the curve. Let us denote by ρ the
vector connecting the point from the curve with the point from the surface. Then,
clearly, we have

(1) R = r(t) + ρ.
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The vector ρ itself lies in the normal plane. Let us denote by θ the angle between
the vectors ρ and ν. Then, as one can see immediately, we have

(2) ρ = a(ν(t) cos θ + β(t) sin θ).

Combining (1) and (2), we see that we obtained a parameterization of the tubular
surface,

(3) R(t, θ) = r(t) + aν(t) cos θ + aβ(t) sin θ.

Implementation issues. When using a computer algebra system, usually we
can compute, formally, the derivatives of functions. However, generally, these
facilities are not available. Apparently, we are left with the problem of evaluating
numerically the derivatives in order to construct the Frenet frame. However, in
practice, we usually do not follow this method. The solution is quite simple, if we
use the geometrical interpretations of the tangent line and the osculating plane
(the plane containing the tangent versor and the principal normal versor). Namely
(see [3])
(1) the tangent line at a point of a curve is the limit position of the straight line

determined by the given point and a neighboring point of the curve, when this
one approaches the given point;

(2) the osculating plane at a point of the curve is the limit position of a plane
determined by the given point and two neighboring points of the curve, when
these ones approaches the given point.

Thus, the algorithm for finding the Frenet at a point of the curve goes like that:
(1) Choose another point of the curve, which is close enough to the given one, by

varying a little bit the parameter. These two points determine a straight line,
which, within a precision limit which should be prescribed by the user, approx-
imates the tangent line. We take then two points of the line. They determine
a vector which, after normalization, can be considered as an approximation of
τ (the tangent versor)

(2) Choose yet another point of the curve, beside the one already chosen at the
previous step, again, close enough to the initial point. The three points will
determine a plane, which is an approximation of the osculating plane. The
unit normal vector of this plane will be, the, an approximation of the binormal
vector, β.

(3) ν (or, rather, its approximation) will be obtained by taking the cross product
of the vectors constructed previously.

3. Canal surfaces

The tubular surfaces are particular cases of more general surfaces, called canal
surfaces, which are envelopes of family of spheres, of variable radius, with the
center on a given curve. It is very easy to see that they have a parameterization
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of the form (3), only that now a is not any longer a constant. For instance, in the
figure 3(a) we represented the canal surfaces obtained as the envelope of the spheres
of radius 4 + sin(2t), with the centers on the circle r(t) = (10 cos t, 10 sin t, 0),
while in the figure 3(b) we represented a member of a family of surfaces which are
very important for computer graphics, a Dupin cyclide. The canal surfaces (and,
in particular, the tubular surfaces) have the property that they have a family
of curvature lines which are circles (the contacts between the surfaces and the
generating spheres). The Dupin cyclides have the property that all the curvature
lines are circles and it is exactly this the reason why they are so useful in computer
graphics, for blending more complex surfaces (see, for instance, the review paper
by Boehm ([4]).

(a) A canal surface on a circle (b) A Dupin cyclide

Figure 3. Canal surfaces

4. Canal surfaces as swept surfaces

Swept surfaces (see, for instance, [10]) are, roughly speaking, surfaces obtained
by “sweeping” a curve along another curve. More specifically, a swept surface is a
surface obtained in the following way. We denote by r(t) the trajectory curve and
by C(θ) the section curve. Then a swept surface determined by the two curves is
a surface of the form

(4) S(t, θ) = r(t) + M(t) ·C(θ),

where M(t) is a 3× 3 matrix, describing the transformations applied to the curve
C along the trajectory. More precisely, M describes the rotations and the scal-
ings applied to the section curve. In practice, usually both T and C are given as
NURBS curves and the intention is to represent the surface ( itself as a NURBS
surface. Usually, for an arbitrary transformation matrix, this might not be possi-
ble, therefore we have to use approximations. In fact, only in the very particular
case of translation surfaces, when the matrix M is the identity we have an exact
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NURBS representation for the surface, if the two generating curves are given as
NURBS curves. However, this case is not very interesting, as one can see immedi-
ately that the only translation surface that is also a tubular surface is the circular
cylinder and, generally speaking, the translation surfaces which are canal surfaces
are surfaces of revolution.

We shall deduce now the precise form of the equation of a tubular surface as
a swept surface, in the sense that we shall indicate the form of the matrix M for
the case of tubular surfaces. First of all, the curve C is a circle of radius a, which
we assume to be situated in the xOy plane, in other words, its equation is of the
form

(5) C(θ) = (a cos θ, a sin θ, 0).

What we have to do now is to rotate the curve C in such a way that, after rotation,
it will lye in the normal plane of the curve r. Thus, for any t, the transformation
matrix M should turn the xOy plane into the normal plane of the curve at the
point r(t). The idea, of course, is to find a three-dimensional rotation that will
turn the axes of the coordinate system (translated at the point of the curve!) into
the axes of the Frenet frame, in such a way that the z-axis correspond to the
tangent of r, the x-axis – to the principal normal and the y-axis – to the binormal.
But then (see [7]), we know that the columns of the rotation matrix should be
nothing but the versors of the new direction. Thus, in this case, we have

(6) M(t) =
[
ν(t) β(t) τ (t)

]
.

More generally, if we consider an arbitrary canal surface, instead of a tubular one,
then an uniform scaling is, also, involved and then the transformation matrix will
be the product of matrices:
(7)

M(t) = [ν(t) β(t) τ (t)] ·

f(t) 0 0
0 f(t) 0
0 0 f(t)

 ≡ [f(t) · ν(t) f(t) · β(t) f(t) · τ (t)] ,

where f(t) is the scaling factor.

Remark 4.1. It is very easy to check that, indeed, the equation (4), with the
transformation matrix (6) and the sweeping curve (5) coincide with the equation
of the tubular surface established earlier, namely the equation (3).

As we mentioned earlier, generally speaking, the swept surfaces are not, as such,
NURBS surfaces, even if the generating curves are NURBS curves. The problem
is due to the, generally complicated, structure of the transformation matrix (in
particular, that of the rotation matrix). This claim is true, in particular, also for
canal surfaces. There are several ways to approximate swept surfaces by NURBS.
They are described, in details, in [10].
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5. The inversion of tubular surfaces and canal surfaces

A geometrical transformation that it was not exploited yet properly in computer
graphics is the inversion. We recall, (see, for instance [2]) that the inversion (in
space), is a geometrical transformation, defined by a point P (called the center of
the inversion) and a real number k,(different from zero), called the power of the
inversion. The inversion I is defined on R \ P , with values in the entire space,
such that, for each point M 6= P , I(P ) is a point that lies on the straight line PM
and the following relation is fulfilled:

(8) PI(M) · PM = k,

where with an overline we denoted the signed length of the segments. If k is
positive, M and I(M) are on the same halfline with respect to P and the inversion
is called positive. Otherwise, they are on opposite sides and the inversion is called
negative. The sphere with center at P and with radius

√
|k| is called the inversion

sphere or inverting sphere.
We are going to find now explicitly the equation of the inverse of a canal surface.

Let P be the center of inversion and k – its power. We assume that the radius
vector of the center is r0 and M an arbitrary point in space, different from M ,
with the position vector r. We denote by M ′ its inverse and by r′ the radius vector
of the inverse. We intend to find this radius vector, in terms of r and r0. First of
all, as the points P,M and M ′ are colinear, the relation (8) is equivalent to

(9)
−−→
PM ·

−−−→
PM ′ = k

or, which is the same,

(10) (r− r0) · (r′ − r0) = k.

On the other hand, as the three points are colinear, we also have

(11) r′ − r0 = λ(r− r0),

where λ is a constant to be determined. Combining (10) and (11), we get to the
conclusion that

(12) r′ = r0 +
r− r0

(r− r0)2
.

Thus, the inverse of a canal surface with respect to a point of radius vector r0 will
have the equation

(13) R′(t, θ) = r0 +
r(t)− r0 + f(t)(ν(t) cos θ + β(t) sin θ)

(r(t)− r0 + f(t)(ν(t) cos θ + β(t) sin θ))2
,

where f(t) is the scaling function. Of course, if f is a constant, we get the equation
of the inverse of tubular surface. The transformation by inversion should play a
more important role in computer graphics, due to several appealing qualities (see,
for instance, ([2]) for a discussion of the properties of inversion):
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Figure 4. A tubular surface and its inverse

• it is a conformal transformation (leaves invariant the angles);
• leaves invariant the curvature lines of surfaces.

Also, a very important property is that the circles that do not pass through the
inversion center are also transformed into circles. As a direct consequence of these
properties, one can see easily that a torus is transformed into a Dupin cyclide
(these are the only surfaces for which both families of curvature lines are circles
(as it happens, also, for the torus, which is, also, a particular case of a cyclide)

By inverting surface, with a suitable choice of the center of power of inversion,
we can produce surfaces with interesting shapes, sometimes we can even imitate
natural shapes. In the figure (5) we show a helical surface (obtained, for instance,
as the envelope of a family of spheres of radii .5, with the center on a cylindrical
helix of parameter .5, lying on cylinder of radius 1.4, having the z-axis as the
symmetry axis, as well as the inverse of this surface with respect to the origin,
with the power of inversion equal to 2.

6. Applications

We shall illustrate here two applications of the tubular surface for the visuali-
sation of surfaces in differential geometry and topology.

We produced, first of all, two plots of a geodesic on a circular cylinder (see
figure 6). Obviously, the method works also in more general circumstances, but we
only want to emphasize the utility as such an approach, as opposed to the classical
one. In the first graphic we have drawn a thinner tube, without transparency, in
the second we took a bigger radius an also used transparency also for the tube,
not only for the cylinder.

As a second example, we mention the illustration of the classification theorem
for compact, orientable surfaces in R3. As it is known (see, for instance, [1]), any
compact, orientable surface of genus g is homeomorphic to a sphere with g handles
(see figure 6), or , which is the same, with a torus with g holes (see figure 6). The
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(a) Thinner, no trans-

parency

(b) Thicker, with trans-

parency

Figure 5. A geodesic on the cylinder

images were constructed very easily, just as unions of a sphere and three tori,
respectively as a union of three tori.
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