
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 2, 2005

COMPUTING DEFAULT EXTENSIONS. A HEURISTIC
APPROACH

MIHAIELA LUPEA

Abstract. Default logics represent a simple but a powerful class of non-
monotonic formalisms. The main computational problem specific to these
logical systems is a search problem: finding all the extensions (sets of non-
monotonic theorems - beliefs) of a default theory. GADEL is an automated
system based on a heuristic approach of the classical default extension com-
puting problem and applies the principles of genetic algorithms to solve the
problem. The purpose of this paper is to extend this heuristic approach for
computing all type of default extensions: classical, justified, constrained and
rational.

1. Introduction

The nonmonotonic reasoning is an important part of human reasoning and rep-
resents the process of inferring conclusions (only plausible, not necessary true) from
incomplete information. Adding new facts may later invalidate these conclusions,
called beliefs.

The family of default logics is based on first-order logic and introduces a new
type of inference rules, called defaults. These special inference rules model laws
that are true with a few exceptions, formalizing a particular type of nonmonotonic
reasoning, called default reasoning. The differences among different variants of
default logic are caused by the semantics of the defaults. These logical systems
are sintactically very simple, but very powerful in their inferential process.

A default theory ∆ = (D, W ) consists of a set W of consistent formulas of
first order logic (the facts) and a set D of default rules. A default has the form
d = α:β1,...,βm

γ , where: α is called prerequisite, β1, . . . , βm are called justifications
and γ is called consequent.

A default d = α:β1,...,βm

γ can be applied and thus derive γ if α is believed and it
is consistent to assumed β1, . . . , βm(meaning that ¬β1, . . . ,¬βm are not believed).

2000 Mathematics Subject Classification. 03B79, 68T15, 68T27.
1998 CR Categories and Descriptors. I2 [Artificial Intelligence]: Logic in artificial in-

telligence – default logics, nonmonotonic reasoning, theorem proving .

49



50 MIHAIELA LUPEA

Using the classical inference rules and the defaults, the set of facts, W, can
be extended with new formulas, called nonmonotonic theorems (beliefs) obtaining
extensions.

The set of defaults used in the construction of an extension is called the gener-
ating default set for the considered extension.

In this paper we will use the following notations (d = α:β
γ ):

Prereq(d) = α, Justif(d) = β, Conseq(d) = γ, Prereq(D) =
⋃

d∈D Prereq(d),
Justif(D) =

⋃
d∈D Justif(d), Conseq(D) =

⋃
d∈D Conseq(d),

Th(X) = {A|X ` A} the classical deductive closure of the set X of formulas.
The versions (classical, justified, constrained, rational) of default logic try to

provide an appropriate definition of consistency condition for the justifications of
the defaults, and thus to obtain many interesting and useful properties for these
logical systems:

• Classical default logic was proposed by Reiter [9]. Due to the indi-
vidual consistency checking of justifications and thus the loss of im-
plicit assumptions when are constructed the classical extensions, this
logical system does not satisfy some desirable formal properties: semi-
monotonicity, regularity, existence of extensions, commitment to as-
sumptions.

• Justified default logic was introduced by Lukaszewicz [3]. The applica-
bility condition of default rules is strengthen and thus individual in-
consistencies between consequents and justifications are detected, but
inconsistencies among justifications are neglected. In this logical sys-
tem the existence of extensions and the semi-monotonicity property is
guaranteed.

• Constrained default logic was developed by Schaub [10]. The consis-
tency condition is a global one and it is based on the observation that in
commonsense reasoning we assume things, we keep track of our assump-
tions and we verify that they do not contradict each other. This logic is
strongly regular, semi-monotonic, strongly commits to assumptions and
guarantees the existence of extensions.

• Rational default logic was introduced in [7] as a version of classical default
logic, for solving the problem of handling disjunctive information. The
defaults with mutually inconsistent justifications are never used together
in constructing a rational default extension. This logic is strongly regular
but does not guarantee the existence of extensions, is not semi-monotonic
and does not commit to assumptions.

Automated theorem proving for default logics has began with solving the ex-
tension computing problem for particular default theories: normal, ordered semi-
normal, and then was extended to general theories. The classical theorem proving



COMPUTING DEFAULT EXTENSIONS. A HEURISTIC APPROACH 51

methods: resolution, semantic tableaux method, connection method, were incor-
porated and adapted in automated systems to solve specific tasks:

• DeRes [2] computes classical extensions for stratified default theories,
using a semantic tableaux propositional prover;

• Exten [1] is based on an operational approach for computing classical,
justified and constrained extensions;

• Xray [12] represents an approach of the query-answering problem in
constrained and cumulative default logics;

• DARR [5] is a theorem prover for constrained and rational default logics
based on a modified version of propositional semantic tableaux method.

Due to its very high level of theoretical complexity (
∑p

2−complete), caused by
the great power of the inferrential process, the problem of finding the extensions
of a default theory, can be solved in an efficient manner only for particular classes
of default theories.

In the paper [8] a heuristic approach of the classical extension computation
problem is presented. An efficient automated system, called GADEL [8], which
computes the classical extensions for propositional default logic using the principles
of genetic algorithms was also developed.

The purpose of this paper is to extend this heuristic approach for computing
all type of default extensions: classical, justified, constrained and rational.

2. Default logics

The results from [6] show that default theories can be represented by unitary
theories (all the defaults have only one justification, d = α:β

γ ) in such a way that
extensions (classical, justified, constrained, rational) are preserved. In this paper
we will use only unitary default theories.

Definition 1. [13] A set X of defaults is grounded in the set of facts W if there is
an enumeration 〈di〉i∈I of the defaults from X such that:

∀i ∈ I we have W ∪ Prereq({d0, d1, ..., di−1}) ` Prereq(di).

The following theorems provide global characterizations for classical, justified,
constrained and rational extensions of a default theory using the generating default
sets.

Theorem 1. [11] Let (D,W) be a default theory, and let E be a set of formulas.
E is a classical extension of (D,W) if and only if E = Th(W ∪Conseq(D′)) for
a maximal set D′ ⊆ D such that D’ is grounded in W and the following conditions
are satisfied:

• For any α:β
γ ∈ D′: W ∪ Conseq(D′) ∪ {β} is a consistent set;

• For any α:β
γ /∈ D′: W ∪ Conseq(D′) ∪ {β} is inconsistent or

W ∪ Conseq(D′) ∪ {¬α} is consistent.



52 MIHAIELA LUPEA

This theorm shows that the defaults are nonmonotonic inference rules, meaning
that conclusions derived using defaults can be later invalidated by adding new
facts. The consistency condition for justifications is an individual one.

Theorem 2. [4] Let (D,W) be a default theory, and let E, J be sets of formulas.
(E,J) is a justified extension of (D,W) if and only if E = Th(W ∪Conseq(D′))
and J = Justif(D′) for a maximal set D′ ⊆ D such that D’ is grounded in W and
the conditions:

• ∀d ∈ D′: the set W ∪ Conseq(D′) ∪ Justif(d) is consistent.
are satisfied.

The justifications of the generating default set satisfy an individual consistency
condition (stronger than in the classical default logic) and are memorized in a
support set J. Unfortunatly this set may be inconsistent, and thus two formulas
of the actual extension E may be derived using contradictory assumptions.

Theorem 3. [10] Let (D,W) be a default theory, and let E, C be sets of formu-
las. (E,C) is a constrained extension of (D,W) if and only if E = Th(W ∪
Conseq(D′)) and C = Th(W ∪ Conseq(D′) ∪ Justif(D′)) for a maximal set
D′ ⊆ D such that D’ is grounded in W and the following condition is satisfied:

• the set W ∪ Conseq(D′) ∪ Justif(D′) is consistent.

Each constrained extension is generated by a set of defaults whose justifications
and consequents are together consistent, and at the same time consistent with the
set of facts. The actual extension E is embedded in a consistent context C where
all the assumptions (justifications) used in the reasoning process are retained.

Theorem 4. [4] Let (D,W) be a default theory, and let E, C be sets of formulas.
(E,C) is a rational extension of (D,W) if and only if E = Th(W ∪Conseq(D′))
and C = Th(W ∪ Conseq(D′) ∪ Justif(D′)) for a maximal set D′ ⊆ D such that
D’ is grounded in W and the conditions:

• the set W ∪ Conseq(D′) ∪ Justif(D′) is consistent;
• ∀d ∈ D\D′ we have:

– W ∪ Conseq(D′) ∪ ¬Prereq(d) is consistent or
– W ∪ Conseq(D′) ∪ Justif(D′ ∪ d) is inconsistent,

are satisfied.

The theorem above states that the reasoning context C must be consistent and
the set of generating defaults must be maximal-active [7] with respect to W and
the actual extension E, for a rational extension.

From theorems 1,2,3 and 4 we can conclude that all four types of extensions
are deductive closures of the set W (explicit content) and the consequents of the
generating default set D’ (implicit content).

According to the initial fixed-point definitions of all variants of default logic we
have the following definitions for the generating default sets:



COMPUTING DEFAULT EXTENSIONS. A HEURISTIC APPROACH 53

Definition 2. Let E1 be a classical extension, (E2, J) be a justified extension,
(E3, C3) be a constrained extension and (E4, C4) be a rational extension of the
default theory (D,W), then we have:

• GDE1
(D,W ) =

{
α:β
γ ∈ D|α ∈ E1 and E1 ∪ {β} is consistent

}

is the generating default set for the classical extension E1;
• GD

(E2,J)
(D,W ) =

{
α:β
γ ∈ D|α ∈ E2 and ∀η ∈ J ∪ E2, E2 ∪ {γ, η} consistent

}

is the generating default set for the justified extension (E2, J);
• GD

(E3,C3)
(D,W ) =

{
α:β
γ ∈ D|α ∈ E3 and C3 ∪ {β, γ} is consistent

}

is the generating default set for constrained extension (E3, C3);
• GD

(E4,C4)
(D,W ) =

{
α:β
γ ∈ D|α ∈ E4 and C4 ∪ {β} is consistent

}

is the generating default set for the rational extension (E4, C4).

From [11] and [13] we have the following result regarding the generating default
sets of different types of extensions.

Theorem 5. The generating default sets for every type of extension are grounded
in the set of facts of the default theory.

Example: In this example we illustrate many types of contradictory informa-
tion in consequents and justifications of the defaults and show how the versions
of default logic solve them. The default theory (D,W) with W = {F ∨ C} and
D =

{
d1 = :A

B , d2 = :¬A
C , d3 = :¬B∧¬F

G , d4 = :¬B∧¬C
E

}
has:

• One classical extension: E1 = Th({F ∨ C, B, C}) with D1 = {d1, d2}
as a generating default set.

• Three justified extensions:
– (E1, J1)=(Th({F ∨ C, B, C}), {A,¬A}) with D1 as a generating

default set;
– (E2, J2)=(Th({F ∨ C, G, E}),{¬B ∧ ¬C,¬B ∧ ¬F}) with

D2={d3, d4} as a generating default set;
– (E3, J3)=(Th({F ∨ C, C, G}), {¬A,¬B ∧ ¬F}) with D3 = {d2, d3}

as a generating default set.
• Three constrained extensions:

– (E4, C4) =(Th({F ∨ C, B}), Th({F ∨ C, B, A})) with D4 = {d1}
as a generating default set;

– (E5, C5) =(Th({F ∨ C, C,G}),Th({F ∨ C, G,¬A,¬B ∧ ¬F})) with
D5 = {d2, d3} as a generating default set;

– (E6, C6) =(Th({F ∨ C, E}), Th({F ∨ C, E,¬B ∧ ¬C}))with D6 =
{d4} as a generating default set.

• Two rational extensions: (E4, C4) and (E5, C5).



54 MIHAIELA LUPEA

3. A heuristic approach of the extension computation problem

In this section we extend the heuristic approach of the classical extension prob-
lem from [8] to all types of default extensions: justified, constrained, rational.
The theorems from the previous section show that the problem of finding exten-
sions can be reduced to the problem of finding the generating default sets for those
extensions.

In this heuristic approach we need to define a search space for generating default
sets and an evaluation function to compute the fitness of each element of this space
according to the definitions of different types of default extensions.

For a default theory (D,W) we define the search space as the set CGD = 2D,
representing all possible configurations, called candidate generating default sets.

Definition 3. For a default theory (D,W) and X ∈ CGD we define:
- candidate extension associated to X: CE(X) = Th(W ∪ Conseq(X));
- candidate context associated to X: CC(X) = Th(W ∪Conseq(X)∪ Justif(X));
- candidate support set associated to X: CJ(X) = Justif(X).

For defining the evaluation function we need four intermediate functions:
f type
0 , f type

1 , f type
2 , f type

3 , where type=clas for classical extensions, type=just for
just ified extensions, type=cons for constrained extensions and type=rat for rat ional
extensions.

f type
0 rates if the candidate extension / candidate context is consistent or not

as follows:

f clas
0 (X), f just

0 (X) =
{

0 if CE(X) is consistent
1 otherwise

fcons
0 (X), frat

0 (X) =
{

0 if CC(X) is consistent
1 otherwise

f type
1 rates the correctness of the candidate generating default set according to

the definitions of different types of default extensions:
f type
1 (X) =

∑n
i=1 π(di), where D = {d1, d2, ..., dn}

The next table defines π(di) - a penalty for each default of D, where k>0.

case di ∈ X CE(X) ` αi Cond-justif type π(di) di = αi : βi

γi

1 true true true 0 di correctly applied
2 true true false k di wrongly applied
3 true false true k di wrongly applied
4 true false false k di wrongly applied
5 false true true k di wrongly not applied
6 false true false 0 di correctly not applied
7 false false true 0 di correctly not applied
8 false false false 0 di correctly not applied



COMPUTING DEFAULT EXTENSIONS. A HEURISTIC APPROACH 55

The condition Cond − justif type represents the consistency condition for the
justifications of defaults according to the Definition 2 of the generating default
sets for different types of extensions.

• Cond− justif clas : CE(X) ∪ {βi} is consistent;
• Cond− justif just : ∀η ∈ CJ(X) ∪ βi : CE(X) ∪ {η, γi} is consistent;
• Cond− justif cons : CC(X) ∪ {βi, γi} is consistent;
• Cond− justifrat : CC(X) ∪ {βi} is consistent.

f type
2 rates the level of groundness of the candidate generating default set as

follows: f type
2 (X) = card(Y ), where Y is the biggest grounded set Y ⊆ CGD.

f type
3 checks the groundness property of X:

f type
3 (X) =

{
0 if X is grounded
1 otherwise

Definition 4. For a default theory (D,W) the evaluation function for a candidate
generating default set X ∈ CGD of an extension of type ∈ {clas, just, cons, rat}
is defined by:

evaltype : CGD 7−→ Z ∪ {⊥,>}
if f type

0 (X) = 1
then evaltype(X) = >
else if f type

1 (X) = 0 and f type
3 (X) = 0

then evaltype(X) = ⊥
else evaltype(X) = f type

1 (X)− f type
2 (X)

endif
endif

The following theorem provides a necessary and sufficient condition for a set
of defaults to be a generating set for an extension of type ∈ {clas, just, cons, rat}
using the evaluation function evaltype.

Theorem 6. Let (D,W) be a default theory. A candidate generating default set
X ∈ CGD generates an extension of type ∈ {clas, just, cons, rat} if and only if
evaltype(X) = ⊥.

Proof of ”⇒”:
Let (W,D) be a default theory, D’ a generating default set for an extension of

type ∈ {clas, just, cons, rat} and suppose that evaltype(D′) 6= ⊥. We have two
cases a) evaltype(D′) = > or b) evaltype(D′) ∈ Z.

a) If evaltype(D′) = > then according to Definition 4, f type
0 (D′) = 1, which

means that:
• CE(D′) = Th(W ∪Conseq(D′)) is inconsistent for classical and justified

default logics.
But from Theorem 1 and Theorem 2, with D’ as a generating default



56 MIHAIELA LUPEA

set, W ∪ Conseq(D′) is consistent as a subset of consistent sets.
Thus we have that the deductive closure of a consistent set is inconsis-
tent, which is a contradiction.
Therefore for a generating default set of a classical or justified extension
we can not have evaltype(D′) = >.

• CC(D′) = Th(W ∪ Conseq(D′) ∪ Justif(D′)) is inconsistent for con-
strained and rational default logics.
But from Theorem 3 and Theorem 4, with D’ as a generating default
set, W ∪ Conseq(D′) ∪ Justif(D′) is consistent.
Thus we have that the deductive closure of a consistent set is inconsis-
tent, which is a contradiction.
Therefore for a generating default set of a constrained or rational exten-
sion we can not have evaltype(D′) = >.

b) If evaltype(D′) ∈ Z, then according to Definition 4, we have f type
1 (D′) 6= 0

or f type
3 (D′) 6= 0

• f type
3 (D′) 6= 0 means that D’ is not grounded in W, which contradicts the

fact that a generating default set for every type of extension is grounded
in W.

• f type
1 (D′) 6= 0 implies that ∃d ∈ D such that π(d) 6= 0.
– According to the definition of π(d) there is only the case 5: ∃d ∈

D−D′ such that π(d) 6= 0, meaning that the default d is wrongly not
applied. This contradicts the maximality of the generating default
set D’ for all types of extensions, from the theorems 1,2,3,4.

– There are 3 cases for which ∃d ∈ D′ such that π(d) 6= 0, with the
meaning that the default d is wrongly applied.
i) case 3 and case 4 from definition of π(d) imply that the condition
for the prerequisite: CE(D′) ` α is false, which contradicts the
property of groundness for a generating default set.
ii) case 2 from the same definition of penalty implies that the consis-
tency condition for the justification of the default d is false, which
contradicts Definition 1 of the generating default sets for all types
of extensions.

Therefore for a generating default set of any type ∈ {clas, just, cons, rat} of ex-
tension we can not have evaltype(D′) ∈ Z.

From a) and b) we can conclude that evaltype(D′) = ⊥, where D’ is a generating
default set of any type ∈ {clas, just, cons, rat} of extension.

Proof of ”⇐”: Suppose that X ∈ CGD is a candidate generating default set of
type ∈ {clas, just, cons, rat} of extension and evaltype(X) = ⊥. From Definition
4 and evaltype(X) = ⊥ we have that f type

0 (X) = 0, f type
1 (X) = 0, f type

3 (X) = 0.

• f type
0 (X) = 0 means that CE(X) = Th(W ∪ Conseq(X)) is consistent

for classical and justified extensions and CC(X) = Th(W ∪Conseq(X)∪



COMPUTING DEFAULT EXTENSIONS. A HEURISTIC APPROACH 57

Justif(X)) is consistent for constrained and rational extension. From
here we have that W ∪ Conseq(X) is consistent, respectivelly W ∪
Conseq(X) ∪ Jusif(X) is consistent.

• f type
3 (X) = 0 means that X is grounded in the set of facts W.

• f type
1 (X) = 0 in cases 1,6,7,8 implies that the conditions for prerequi-

sites and justifications for the defaults from X are satisfied according
to different types of extensions, meaning that the defaults from X are
generating defaults. f type

1 (X) = k in cases 2,3,4,5 implies that all the
defaults from D-X can not be generating defaults.

Now we can easy prove that the conditions from the Theorems 1,2,3 and 4 are
satisfied, therefore X is a generating default set for different types of extensions.

Example - continued: we will calculate the evaluation function for different
candidate generating default sets, according to different types of extensions.

- evalclas(D1) = ⊥, and thus D1 is a generating default set for E1 because:
• CE(D1) = Th({F ∨ C, B, C}) consistent implies f clas

0 (D1) = 0;
• the defaults from D1 have no prerequisites, and thus f clas

3 (D1) = 0;
• f clas

1 (D1) = π(d1)+π(d2)+π(d3)+π(d4) = 0+0+0+0 = 0 according
to the definition of the penalty. d1, d2 are correctly applied (Cond −
justif clas for d1 and d2 is satisfied) and d3, d4 are correctly not applied
(Cond− justif clas for d3 and d4 is not satisfied).

- evalcons(D1) = >, therefore D1 is not a generating default set for a con-
strained extension because f cons

0 (D1) = 1 (CC(D1) = Th({F ∨ C,B,C, A,¬A})
is inconsistent).

- evalcons(D5) = evalrat(D5) = ⊥, therefore D5 = {d2, d3} is a generating
default set for the constrained and rational extension (E5,C5) because:

• CC(D5) = Th({F ∨ C,G,¬A,¬B ∧ ¬F}) is consistent, and thus
f cons
0 (D5) = frat

0 (D5) = 0;
• no prerequisites for d2 and d3 implies fcons

3 (D5) = frat
3 (D5) = 0;

• f cons
1 (D5) = frat

1 (D5) = 0, there is no penalty for the defaults of D5 :
d2, d3 are correcty applied and d1, d4 are correctly not applied.

- evalcons(D6) = ⊥ but evalrat(D6) ∈ Z, therefore D6 = {d4} is a generating
default set for the constrained extension (E5,C5) but can not be a generating
default set for a rational extension as follows:

• CC(D6) = Th({F ∨ C,E,¬B ∧ ¬C}) is consistent, and thus
f cons
0 (D6) = frat

0 (D6) = 0;
• no prerequisite for d4 implies f cons

3 (D6) = frat
3 (D6) = 0;

• f cons
1 (D6) = 0, there is no penalty for the defaults of D6 : d4 is correcty

applied and d1,d2,d3 are correctly not applied.
• f cons

1 (D6) 6= 0, there is a penalty for the defaults d1 and d2 because
they are wrongly not applied (case 5: the conditions for prerequisites
and justifications are satisfied, but d1, d2 does not belong to D6).



58 MIHAIELA LUPEA

If we try to add one or both of these defaults to D6 to obtain a new
candidate default set, the new candidate context will not be consistent,
which means that even if d1, d2 can be applied, their application will
give inconsistency.

4. Conclusions

Based on the results from [8], in this paper we proposed a heuristic approach
of the extension computing problem for all variants of default logic: classical,
justified, constrained and rational. The evaluation function is used to compute
the fitness of the elements of the search space according to the definitions of the
generating default sets for different types of extensions. Future works will consist
in developping an automated system, based on this approach and applying the
principles of genetic algorithms.

References

[1] G. Antoniou, A.P. Courtney, J. Ernst, MA. Williams, A System for Computing Constrained
Default logic Extensions, Logics in Artificial Intelligence, JELIA’96, Lecture Notes in Arti-
ficial Intelligence, 1126, 1996, pg. 237-250.

[2] P. Cholewinski, W. Marek si M. Truszczynski, Default reasoning system DeReS, Proceedings
of KR-96, Morgan Kaufmann, 1996, pg. 518-528.

[3] W. Lukasiewicz, Considerations on default logic - an alternative approach, Computational
Intelligence, 4, 1988, pg. 1-16.

[4] M. Lupea, Nonmonotonic reasoning using default logics, Ph.D. Thesis, Babes-Bolyai Uni-
versity, Cluj-Napoca, 2002.

[5] M. Lupea, DARR - A theorem prover for constrained and rational default logics, Studia
Universitas Babes-Bolyai, Informatica, XLVII, No.1, 2002, pg. 45-52.

[6] W. Marek, M. Truszczynski, Normal form results for default logics, Non-monotonic and
Inductive logic, Springer Verlag, LNAI 659, 1993, pg. 153-174.

[7] A. Mikitiuk, M. Truszczynski, Rational default logic and disjunctive logic programming, A.
Nerode, L.Pereira, Logic programming and non-monotonic reasoning, MIT Press, 1993, pg.
283-299.

[8] P. Nicolas, F. Saubion, I. Stephan, Genetic algorithm for extension search in default logic,
8-th International Workshop on Non-Monotonic Reasoning, 2000.

[9] R. Reiter, A Logic for Default reasoning, Artificial Intelligence 13, 1980, pg. 81-132.
[10] T.H. Schaub, Considerations on default logics, Ph.D. Thesis, Technischen Hochschule Darm-

stadt, Germany, 1992.
[11] T.H. Schaub, The automation of reasoning with incomplete information, Springer-Verlag,

Berlin, 1997.
[12] T.H. Schaub, XRay system: An implementation platform for local query-answering in de-

fault logics, Applications of Uncertainty Formalisms, Lecture Notes in Computer Science,
vol 1455, Springer Verlag, 1998, pg. 254-378.

[13] C. Schwind, A tableaux-based theorem prover for a decidable subset of default logic, Pro-
ceedings CADE, Springer Verlag, 1990.

Babeş Bolyai University, Cluj Napoca,Romania
E-mail address: lupea@cs.ubbcluj.ro


