
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 2, 2005

INTEGRATING CONVERSIONS INTO A COMPUTATIONAL
ALGEBRAIC SYSTEM

VIRGINIA NICULESCU AND GRIGORETA SOFIA MOLDOVAN

Abstract. Conversions play an important role in any computational alge-
braic system. This article analyzes two approaches for integrating conver-
sions. The first is based on template method design pattern and the other is
based on aspect-oriented programming. The advantages and disadvantages
of these approaches are emphasized.

1. Introduction

Object oriented programming and design patterns introduce a high level of
abstraction that allows us to implement and work with mathematical abstractions.
Classic algebraic libraries and systems, based on imperative programming, contain
subalgorithms for working with polynomials, matrices, vectors, etc. Their main
inconvenience is the dependency on types.

In [4] we have analyzed the design of the kernel for an object oriented com-
putational algebra system based on design patterns. This approach allows us to
work not only with concrete algebraic structures, but also with abstract algebraic
structures. The advantages are mainly given by the creational design patterns,
by reflection and dynamic loading, and by representation independence. These
introduce significant flexibility and abstraction.

Conversions play an important role in a computational algebraic system, and
we present here two solutions for integrating them.

2. The Basic Design of the Algebraic System

The main requirement for an alegraic system is the possibility of working with
abstract algebraic structures like groups, rings, fields, etc. The user has to be
allowed to define concrete algebraic structures by using these abstractions. We
restrict the discussion to basic algebraic structures, and to polynomials and vector
spaces.

Received by the editors: November 21, 2005.
2000 Mathematics Subject Classification. 68R01, 68U99.
1998 CR Categories and Descriptors. J.2 [Computer Applications]: Physical Sciences

and engineering – Mathematics and statistics ;

41



42 VIRGINIA NICULESCU AND GRIGORETA SOFIA MOLDOVAN

Abstract classes are defined for elements of each abstract algebraic structure.
Their hierarchy is shown in Figure 1.

Figure 1. The class diagram for basic abstract algebraic structures.

New abstract algebraic structures may be built over the existing algebraic struc-
tures; for example polynomials and vector spaces. Polynomials are built over a
unitary commutative ring, and they also form a unitary commutative ring. In
order to define a vector space we need a group, a field, and an external operation.

The Composite design pattern [3] may be used to implement this kind of struc-
tures. Using the Composite pattern we may define polynomials over other polyno-
mials. Similar examples may be given for matrices – we can define matrices over
polynomials, etc.

More details about the system design can be found in [4].

3. Conversions

Operations between different types of numbers are an important issue for an
algebraic system, and the design of the algebraic structures must take into consid-
eration the design of the conversions.



INTEGRATING CONVERSIONS INTO A COMPUTATIONAL ALGEBRAIC SYSTEM 43

If we add a real number to a complex number, we know that the result is a
complex, because a real number is also a complex number, which has the imaginary
part equal to zero.

If we generalize this, we arrive to a situation where between two algebraic
structures an inclusion relation may be defined. We may have subgroups, subrings,
etc. Let us consider that we have a group (G, +), and a subgroup (or submonoid)
(SG,+), SG ⊂ G. Corresponding to these, we will have the classes GElem and
SGElem. If we have an element g of type G and an element sg of type SG, we may
consider that sg is also an element of type G, and we may use it in operations of
class GElem. For this we have to allow automatic conversions from SG type to G
type.

For example, if we consider the group (Z,+) and the monoid (N,+), we have
to allow conversions from natural to integer numbers.

One solution to allow this is to use inheritance for defining SGElem class (to be
derived from GElem). Then the operation g.plus(sg) would be possible. But the
operation plus is a commutative one, so we would like to also allow the operation
sg.plus(g), but using this solution this is not possible.

But the main disadvantage of the solution based on inheritance can be un-
derstood from the following example. We define the class IntElem derived from
GroupElem, corresponding to the group (Z,+), and the class NaturalElem derived
from MonoidElem, corresponding to the monoid (N,+). If we choose the solution
based on inheritance for conversions, we have to derive NaturalElem from class
IntElem, as well. So, we arrive to a situation when NaturalElem is a group, too
— which is completely wrong (the corresponding UML diagram is presented in
Figure 2).

Figure 2. A wrong solution for implementing conversions.

A compatibility between two classes is defined when an instance of one class
can be converted into an instance of the other.

As a general rule we allow defining conversion if an inclusion type relation can
be defined between structures.

Still, we should allow some special cases:



44 VIRGINIA NICULESCU AND GRIGORETA SOFIA MOLDOVAN

• To add a simple real to a polynomial over reals.
• Consider the group of continuous functions (RA,+), where RA = {f |f :

A → R, f continuous, A ⊂ R}. If we have g ∈ RA, we can add it to an
r ∈ R, and the result will be of type RA. We can add g to r, because r
can be seen as h(x) = r, for any x ∈ A, hence we actually apply the add
operation to g and h.

• New structures may be defined based on the existing ones. For example,
the group (Mn,+), where Mn = {a + b

√
n|a, b ∈ Z} and n ∈ N, n is a

prime number. The structure (Mn,+) is a group, and Z ⊂ Mn (because
if b = 0, a + b

√
n ∈ Z, ∀a ∈ Z).

So, we may also admit conversions when we have a structure defined over an-
other structure, and when a simple element of the basic structure may form an
element of the complex structure.

Another special case when conversions have to be used is related to special
representations and precision. If we want to represent structures that are defined
over infinite sets, we cannot represent all the elements. So, we may consider only
the elements of some subsets. These subsets may be included one into another.
Corresponding to these we will have different classes. Integers may be represented
using primitive types like int or long, but also using another representation that
could be based on a bigger base. Because they are different representations of the
same algebraic structures, they have to be compatible. (The situation is similar to
that of the usual conversions that appear in any programming language.) When it
is the case, we may base our conversions on the conversions in the implementation
language.

3.1. The Basic Design. The solution that we suggest is based on reflection and
dynamic loading. These are used for defining new compatibilities between the
existing and the new created structures, and for dynamic loading of these compat-
ibilities. The compatibilities are implemented as distinct classes, and their names
are stored in a specific file, which can be updated. We will be able to choose
whether conversions are accepted or not, or to choose a subset of the set of all
defined conversions.

We define a Conversions class, which will store all the conversions available
in the system. This class will be a singleton [3], because we do not need more
than one instance of it. We also define a Conversion interface, which will handle
the actual conversion, and which has three methods (Figure 3). The methods
getFirstClass() and getSecondClass() are used to determine what type of
conversions the concrete class deals with. The convert(...) method converts
one of the two parameters to the class of the other parameter. Because we do
not need to know which parameter has been converted, the result will be an array
with two elements.

When the constructor of the Conversions class is called, it will dynamically
load from the file all the classes that implement the Conversion interface, and store



INTEGRATING CONVERSIONS INTO A COMPUTATIONAL ALGEBRAIC SYSTEM 45

an instance of each class in a list. The method existConversion(...) verifies
whether there exists a conversion between the two classes given as parameters. If
there is one, the convert(...) method of the Conversions class will be used to
make the actual conversion, using the corresponding Conversion class.

Figure 3. Integer - Real - Complex conversions.

The inconvenience of this solution is that a different conversion class must be
defined for each possible compatibility. We must define a class for converting an
integer to a real, one for converting a real to a complex, and also one for converting
an integer to a complex. This inconvenience can be solved using a graph of types
and then finding the smallest path from one type to another. The vertices of
this graph represent the types, and an edge between two vertices represents a
compatibility between the two corresponding types.

In the following, we present two approaches to integrate this design into the
algebraic system.

3.2. The Template Method Approach. For each operation equals(), plus(),
minus(), etc. the same steps are followed every time, so one approach to integrate
the conversions could be based on Template Method design pattern [3].

As we have said before, two algebraic elements are considered compatible if
they have the same class or there is a conversion between them (Section 3). Any
algebraic element can be compared for equality with another algebraic element if
they are compatible. So, AlgElem has an equals() method that compares two
AlgElems for equality.

It is desirable to build an extendible system, to which the user can add new
types. For each new type, the developer will have to override the equals()
method, where he/she has to verify first if those elements are compatible. The
equals() method is implemented as a template method. It verifies whether the
elements have the same type, and if they do, it calls the method equalsS()
which compares two elements of the same type. If the elements have different
types, but they are compatible, it first calls the convert() method and then the



46 VIRGINIA NICULESCU AND GRIGORETA SOFIA MOLDOVAN

equalsS() method to compare them. If the types are incompatible, an exception
is thrown. Therefore, the AlgElem defines not only the method equals() (the
template method), but also an abstract method equalsS().

public abstract class AlgElem {

public final boolean equals(AlgElem e)

throws IncompatibleClassesException{

if (this.getClass()!=e.getClass()){

if (Conversions.getInstance().existConversion(

this.getClass(),e.getClass())){

AlgElem[] conver=Conversions.getInstance().convert(this, e);

return conver[0].equalsS(conver[1]);

}else

throw new IncompatibleClassesException("There is not defined

any conversion between "+this.getClass()+" "+e.getClass());

}else

return this.equalsS(e);

}

protected abstract boolean equalsS(AlgElem o);

}

Figure 4. Java implementation of the class AlgElem.

In the hierarchy of algebraic structures (Figure 1) there are other operations that
need to use conversions: plus(), minus(), times(), etc. These operations
take parameters(operands) which should have the same type. But there are cases
when these operations could be called with parameters of different types, because
the types are compatible.

The first time such an operation appears in the hierarchy, we define a template
method for it. This template method calls another method that does the actual
work on the parameters of the same type. The implementation is similar to that
for equals.

This solution is quite good but it spans over many classes (AlgElem,
SemigroupElem, GroupElem, RingElem and DivisionRingElem) and any modifi-
cations/changes to the conversions module will also have to be done in all these
classes. This solution also adds a number of new methods to the algebraic struc-
tures interfaces, which increases the complexity.

If we decide not to allow conversions, or to only allow a subset of the defined
conversions, we have to replace the file that contains them. No recompilation of
the program is needed.

3.3. The Aspect Oriented Approach. The second approach uses Aspect Ori-
ented Programming(AOP) [1].

AOP is a new methodology that provides separation of crosscutting concerns
(as logging, authorization, etc.) by introducing a new unit of modularization, the



INTEGRATING CONVERSIONS INTO A COMPUTATIONAL ALGEBRAIC SYSTEM 47

aspect that crosscuts other modules. With AOP it is possible to implement cross-
cutting concerns in aspects instead of fusing them in the core modules. An aspect
weaver, which is a compiler-like entity, composes the final system by combining
the core and crosscutting modules through a process called weaving. The result
is that AOP modularizes the crosscutting concerns in a clear-cut fashion, yielding
a system architecture that is easier to design, implement, and maintain. Aspect-
oriented programming is a way of modularizing crosscutting concerns much like
object-oriented programming is a way of modularizing core concerns.

Conversions are concerns that are separated from operations such as equals(),
plus(), etc. In order to integrate conversions in the system using this approach,
all we have to do is define an aspect: ConversionsAspect that contains the calls to
the conversions. For each method that might use conversions we define a pointcut
and an advice. The pointcut gathers the context and other necessary information,
and the advice tells what it must be done when the pointcut is reached. The code
below presents the pointcut for equals() when AspectJ [2] is used:

equals(AlgElem e1,AlgElem e2): target(e1) && args(e2) &&

execution(* AlgElem+.equals(AlgElem) throws IncompatibleClassesException);

We consider here as join point the execution of the method equals() from
AlgElem or any of its subclasses. After that, we define an advice for it. Because
this method might throw an exception when there is no conversions between the
two algebraic elements, and the body of equals() is no longer executed, we need
to use the around() advice:

Object around(AlgElem e1,AlgElem e2)

throws IncompatibleClassesException : equals(e1,e2){

if (e1.getClass()!=e2.getClass()){

if (Conversions.getInstance().existConversion(

e1.getClass(),e2.getClass())){

AlgElem[] conver=Conversions.getInstance().convert(e1,e2);

return new Boolean(conver[0].equals(conver[1]));

}else

throw new IncompatibleClassesException("There is not defined

any conversion between "+e1.getClass()+" "+e2.getClass());

}else

return proceed(e1,e2);

}

The pointcuts and advices are very similar for all operations, but after a call
to conversions the context might change, so we must take into consideration this
situation, as well. For example, if we try to compare a real to a complex, the
equals() method called belongs to the first parameter (which belongs to the
Real class), but after the conversion we need to call the equals() method from
the Complex class, and this is not possible using AspectJ proceed() statement,
which remembers the states of each parameters from the advice.



48 VIRGINIA NICULESCU AND GRIGORETA SOFIA MOLDOVAN

If later we decide not to use conversions, we have to recompile the system
without the ConversionsAspect. We could replace this aspect with another one
to check the compatibility of the parameters type, but it is not mandatory.

Using AOP there is no need to add more methods in the algebraic structure
classes, the conversion crosscutting concern is kept in one place, and if in the fu-
ture more operations that need conversions are added, the only place that must
be changed/modified is the aspect. If the Conversion module is changed, modifi-
cations must also be done in only one place, the ConversionsAspect aspect.

4. Conclusion

We have analyzed how conversions could be added to an algebraic system. The
design is based on reflection and dynamic loading, and can be integrated using two
approaches. The first one uses Template Method design pattern. This approach
is easy to understand and allows adding new types and operations that might use
convertions without recompilation. But it also has some disadvantages. For each
operation a new template method has to be built and this increases the complexity
of maintenance and extendibility. If the conversions are removed, the execution is
still slown down because of the verifications done by the template methods. The
second approach uses Aspect Oriented Programming. Using this approach there
is no need to add new methods in the algebraic structures classes, the conversion
crosscutting concern is kept in one place, and if in the future more operations that
need conversions are added, the only place that must be changed is the aspect.
But any addition of new types needs recompilation of the whole system. If the
conversions are removed, we need to recompile the whole system, but the execution
is not slown down by verifications.

References

[1] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J. Irwin.
Aspect-Oriented Programming, Proceedings European Conference on Object-Oriented Pro-
gramming (ECOOP), Springer-Verlag, 1997, pages 220–242.

[2] The AspectJ web site: http://eclipse.org/aspectj.
[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable

Object Oriented Software, Addison-Wesley, 1995.
[4] Niculescu V, Moldovan G.S.,Building an Object Oriented Computational Algebra System

Based on Design Patterns, Proceedings of 7th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC’05), IEEE Computer Press, 2005.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,
Romania

E-mail address: vniculescu@cs.ubbcluj.ro

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,
Romania

E-mail address: grigo@cs.ubbcluj.ro


