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ADAPTIVE CLUSTERING USING A CORE-BASED APPROACH

GABRIELA ŞERBAN AND ALINA CÂMPAN

Abstract. This paper studies an adaptive clustering problem. We focus on
re-clustering an object set, previously clustered, when the feature set char-
acterizing the objects increases. We propose an adaptive, k-means based
clustering method, Core Based Adaptive k-means (CBAk), that adjusts the
partitioning into clusters that was established by applying k-means or CBAk
before the feature set changed. We aim to reach the result more efficiently
than running k-means starting from the current clustering. Experiments test-
ing the method’s efficiency are also reported.
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1. Introduction

A large collection of clustering algorithms is available in the literature. The
papers [5], [6] and [7] contain comprehensive overviews of the existing clustering
techniques.

A well-known class of clustering methods is the one of the partitioning by re-
location methods, with representatives such as the k-means algorithm or the k-
medoids algorithm. Essentially, given a set of n objects and a number k, k ≤ n,
such a method divides the object set into k distinct clusters. The partitioning
process is iterative and stops when a “good” partitioning is achieved. Finding a
“good” partitioning coincides with optimizing a criterion function. The criterion
function used in k-means is the squared error criterion, which tends to work well
with isolated and compact clusters [7].

Generally, these methods apply on a set of objects measured against a known
set of features (attributes). But there are applications where the attribute set
characterizing the objects evolves. For obtaining in these conditions a partitioning
of the object set, the clustering algorithm can be, obviously, applied over and
over again, beginning from scratch or from the current partitioning, each time
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when the attributes change. But this can be inefficient. What we want is to
propose an adaptive, k-means like clustering method, named Core Based Adaptive
k-means (CBAk), that is capable to efficiently re-partition the object set, when the
attribute set increases. The method starts from the partitioning into clusters that
was established by applying k-means or CBAk before the attribute set changed.
We aim to reach the result more efficiently than running k-means starting from
the current clustering.

Related Work

There are few approaches reported in the literature that address the problem of
adapting the result of a clustering when the object feature set is extended. Early
works treat the sequential use of features in the clustering process, one by one. An
example of such a monothetic approach is mentioned in [7]. A more recent paper
[10] analyzes the same problem of adapting a clustering produced by a DBSCAN
like algorithm, using some additional structures and distance approximations in
an Euclidian space. However, adapting a clustering resulted from a partitioning
algorithm, using partitioning-based methods hasn’t been reported by none of these
works.

2. Theoretical Model

Let X = {O1, O2, . . . , On} be the set of objects to be classified. Each object is
measured with respect to a set of m initial attributes and is therefore described
by an m-dimensional vector Oi = (Oi1, . . . , Oim), Oik ∈ <+, 1 ≤ i ≤ n, 1 ≤ k ≤ m.
Usually, the attributes associated to objects are standardized, in order to ensure
an equal weight to all of them [5].

Let {K1,K2, . . . , Kp} be the set of clusters discovered in data by applying the
k-means algorithm. Each cluster is a set of objects, Kj = {Oj

1, O
j
2, . . . , O

j
nj
}, 1 ≤

j ≤ p. The centroid (cluster mean) of the cluster Kj is denoted by fj , where

fj =




njP
k=1

Oj
k1

nj
, . . . ,

njP
k=1

Oj
km

nj


.

The measure used for discriminating objects can be any metric or semi-metric
function d. We used the Euclidian distance:

d(Oi, Oj) = dE(Oi, Oj) =

√
m∑

l=1

(Oil −Ojl)2.

The measured set of attributes is afterwards extended with s (s ≥ 1) new
attributes, numbered as (m+1), (m+2), . . . , (m+s). After extension, the objects’
vectors become O′i = (Oi1, . . . , Oim, Oi,m+1, . . . , Oi,m+s), 1 ≤ i ≤ n. We denote by
extO′

i = (Oi,m+1, . . . , Oi,m+s) the s-attribute extension of the vector associated to
Oi.
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We want to analyze the problem of recalculating the objects’ grouping into
clusters, after object extension and starting from the current partitioning. We
start from the fact that, at the end of the initial k-means clustering process, all
objects are closer to the centroid of their cluster than to any other centroid. So,
for any cluster j and any object Oj

i ∈ Kj , inequality (1) below holds.

(1) dE(Oj
i , fj) ≤ dE(Oj

i , fr),∀j, r, 1 ≤ j, r ≤ p, r 6= j.

We denote by K ′
j , 1 ≤ j ≤ p, the set containing the same objects as Kj , after

the extension. By f ′j , 1 ≤ j ≤ p, we denote the mean (center) of the set of K ′
j . We

denote by extf ′j =




njP
k=1

Oj
k,m+1

nj
, . . . ,

njP
k=1

Oj
k,m+s

nj


 the s-attribute extension of the

K ′
j center (mean). These sets K ′

j , 1 ≤ j ≤ p, will not necessarily represent clusters
after the attribute set extension. The newly arrived attributes can change the ob-
jects’ arrangement into clusters. But there is a considerable chance, when adding
one or few attributes to objects, that the old arrangement in clusters to be close
to the actual one. The actual clusters can be obtained by applying the k-means
algorithm on the set of extended objects starting from the current clustering. But
we try to avoid this process and replace it with one less expensive but not less
accurate. With these being said, we agree, however, to continue to refer the sets
K ′

j as clusters.
We therefore take as starting point the previous partitioning into clusters and

study in which conditions an extended object Oj′
i is still “correctly” placed into

its cluster K ′
j . For that, we express the distance of Oj′

i to the center of its cluster,
f ′j , compared to the distance to the center f ′r of any other cluster K ′

r.

Lemma 1. When inequality (2) holds for an extended object Oj′
i ∈ K ′

j

(2) d2(extOj′
i , extf ′j) ≤ d2(extOj′

i , extf ′r)

for all r = 1, p, r 6= j then the object Oj′
i is closer to the center f ′j than to any

other center f ′r, 1 ≤ j, r ≤ p, r 6= j.

Proof
We prove this statement. For Oj′

i and 1 ≤ r ≤ p

d2(Oj′
i , f ′j)−d2(Oj′

i , f ′r) = d2(Oj
i , fj)+d2(extOj′

i , extf ′j)−d2(Oj
i , fr)−d2(extOj′

i , extf ′r).
Using the inequality (1), we have:
d2(Oj′

i , f ′j)− d2(Oj′
i , f ′r) ≤ d2(extOj′

i , extf ′j)− d2(extOj′
i , extf ′r).

If the inequality (2) holds, then the inequality above becomes:
d2(Oj′

i , f ′j)− d2(Oj′
i , f ′r) ≤ 0.

Because all distances are non-negative numbers, it follows that:
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d(Oj′
i , f ′j) ≤ (Oj′

i , f ′r), ∀r, 1 ≤ r ≤ p, r 6= j.

Remark The global complexity of the CBAk algorithm is not increased by the
cluster cores calculation.

3. The Core Based Adaptive k-means Algorithm

We will use the property enounced in the previous paragraph in order to identify
inside each cluster K ′

j , 1 ≤ j ≤ p, the objects that have a considerable chance to
remain stable in their cluster, and not to move into another cluster as a result of
the attribute set extension. These objects form the core of their cluster.

Definition 1.

a) We denote by StrongCorej = {Oj′
i |Oj′

i ∈ K ′
j , O

j′
i satisfies the inequality

(2)}, ∀r, 1 ≤ r ≤ p, r 6= j.
b) Let sat(Oj′

i ) be the set of all clusters K ′
r, ∀r, 1 ≤ r ≤ p, r 6= j not

containing Oj′
i and for which object Oj′

i satisfies inequality (2).

We denote by WeakCorej = {Oj′
i |Oj′

i ∈ K ′
j , |sat(Oj′

i )| ≥
njP

k=1
|sat(Oj′

k )|
nj

}
the set of all objects in K ′

j satisfying inequality (2) for at least so many
clusters that all objects in K ′

j are satisfying (2), in the average.
c) Corej = StrongCorej iif StrongCorej 6= ∅; otherwise,

Corej = WeakCorej . OCorej = K ′
j \ Corej is the set of out-of-core

objects in cluster K ′
j .

d) We denote by CORE the set {Corej , 1 ≤ j ≤ p} of all cluster cores and
by OCORE the set {OCorej , 1 ≤ j ≤ p}.

We have chosen the above cluster cores definition because of the following rea-
sons. It is not sure that there is in cluster K ′

j any object that satisfies inequality (2)
for all clusters K ′

r, 1 ≤ r ≤ p, r 6= j. If there are such objects (StrongCorej 6= ∅),
we know that, according to Lemma 1, they are closer to the cluster center f ′j than
to any other cluster center f ′r, 1 ≤ r ≤ p, r 6= j. Then, Corej will be taken to be
equal to StrongCorej and will be the seed for cluster j in the adaptive algorithm.
But if StrongCorej = ∅, for the core not to be empty, we will choose as seed for
cluster j other objects, the most stable ones between all objects in K ′

j .
The cluster cores, chosen as we described, will serve as seed in the adaptive

clustering process. All objects in Corej will surely remain together in the same
group if clusters do not change. This will not be the case for all core objects, but
for most of them, as we will see in the results section.

We give next the Core Based Adaptive k-means algorithm.
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We mention that the algorithm stops when the clusters from two consecutive
iterations remain unchanged or the number of steps performed exceeds the maxi-
mum allowed number of iterations.

Algorithm Core Based Adaptive k-means is

Input: - the set X = {O1, . . . , On} of m-dimensional previously clustered

objects,

- the set X ′ = {O′1, . . . , O′
n} of (m+s)-dimensional extended objects

to be clustered; O′i has the same first m components as Oi,

- the metric dE between objects in a multi-dimensional space,

- p, the number of desired clusters,

- K = {K1, . . . , Kp} the previous partition of objects in X,

- noMaxIter the maximum number of iterations allowed.

Output: - the new partition K′ = {K′
1, . . . , K

′
p} for the objects in X ′.

Begin

For all clusters Kj ∈ K

Calculate Corej = (StrongCorej 6= ∅)?StrongCorej : WeakCorej

K′
j = Corej

Calculate f ′j as the mean of objects in K′
j

EndFor

While (K′ changes between two consecutive steps) and

(there were not performed noMaxIter iterations) do

For all clusters K′
j do

K′
j = {O′i | d(O′i, f

′
j) ≤ d(O′i, f

′
r), ∀r , 1 ≤ r ≤ p, 1 ≤ i ≤ n}

EndFor

For all clusters K′
j do

f ′j = the mean of objects in K′
j

EndFor

EndWhile

End.

The algorithm starts by calculating the old clusters’ cores. The cores will be the
new initial clusters from which the iterative processing begins. Next, the algorithm
proceeds in the same manner as the classical k-means method does.

4. Experimental Evaluation

In this section we present some experimental results obtained by applying the
CBAk algorithm described in section 3.

As case studies, for experimenting our theoretical study described in section 2
and for evaluating the performance of the CBAk algorithm, we considered the data
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sets described in [1]. The data were taken from the website ”http://www.cormac-
tech.com/neunet” and have also been used in [2, 4, 9].

4.1. Quality Measures. As a quality measure for our algorithm we take the
movement degree of the core objects and of the extra-core objects. In other words,
we measure how the objects in either Corej ∈ CORE, or OCorej ∈ OCORE,
remain together in clusters after the algorithm ends.

As expected, more stable the core objects are and more they remain together
in respect to the initial sets Corej , better was the decision to choose them as seed
for the adaptive clustering process.

We denote by S = {S1, S2, . . . , Sp}, Si ⊆ Ki, a set of clusters’ subsets (as CORE
and OCORE are). We express the stability factor of S as:

(3) SF (S) =

p∑
j=1

|Sj |
no of clusters where the objects in Sj ended

p∑
j=1

|Sj |

The worst case is when each object in Sj ends in a different final cluster, and
this happens for every set in S. The best case is when every Sj remains compact
and it is found in a single final cluster. So, the limits between which SF (CORE)
varies are given below, where the higher the value of SF (CORE) is, the better
was the cores choice:

(4)
p

p∑
j=1

|Corej |
≤ SF (CORE) ≤ 1

For comparing the quality of the partitions produced by our algorithm and by
k-means, we consider the squared sum error (SSE) of a clustering K, defined as:

(5) SSE(K) =
∑

Kj∈K

∑

Oi∈Kj

d2(Oi, fj)

When comparing two partitions K1 and K2 for the same data set, we will say
that K1 is better than K2 iff SSE(K1) < SSE(K2).

For measuring the clustering tendency of a data set, we use the Hopkins sta-
tistics, H [11], an approach that uses statistical tests for spatial randomness. H
takes values between 0 and 1, and a value near 1 indicates that data is highly
clustered. Usually, for a data set with clustering tendency, we expect for H values
greater than 0.5.
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4.2. Results. In this section we comparatively present the results obtained by
applying the CBAk algorithm and k-means, for the experimental data. We mention
that the results are calculated in average, for several executions.

Table 1. The comparative results

Experiment Cancer Dermatology Wine

No of objects 457 366 178

No of attributes (m+s) 9 34 13

No of new attributes (s) 4 3 4

No of clusters 2 6 3

No of k-means iterations for m attributes 5.66 11.2 9.28

No of k-means iterations for +s attributes 4 1.33 3.85

No of CBAk iterations for +s attributes 4 5.66 2.42

k-means SSE for +s attributes 13808.784 12683.82 49.016

CBAk SSE for +s attributes 13808.784 12522.95 49.019

SF(CORE) 1.0 0.8119 0.97

SF(OCORE) 0.5 0.646 0.475

H for s attributes 0.666 0.68122 0.7018

H for m+s attributes 0.7148 0.6865 0.7094

From Table 1 we observe that using the CBAk algorithm the number of itera-
tions for finding the solution is not always smaller that in case of using k-means;
but the cores’ stability factor, SF (CORE), is high. We mention that for every run
of each experiment, SSE(CBAk) has been roughly equal to SSE(k-means). Also,
every time, the stability of the objects chosen to be part or cores was greater than
the stability of out-of-core objects.

5. Conclusions and Future Work

In this paper we proposed a new method for adapting the result of a clustering
when the attribute set describing the objects increases. The experiments on differ-
ent data sets prove that, in most cases, the result is reached more efficiently using
the proposed method than running k-means starting from the current partition, on
the feature-extended object set. But there are some situations when it is better to
resort to a k-means clustering of the feature-extended object set, starting from the
existing clustering, than using the CBAk algorithm. For example, such situations
can be: the addition of a large number of features or the addition of new features
with large information gain and contradictory information with respect to the old
feature set.

Further work may be done in the following directions:
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• to isolate conditions to decide when it is more effective to adapt (using
CBAk) the result of a clustering of the feature-extended object set than
to resume its clustering using k-means;

• to study how the information brought into the system by the newly
added attributes, their correlation with the initial ones, influences the
number of iterations performed by the CBAk algorithm for finding the
solution;

• to apply the adaptive algorithm on precise problems, from where the
need of such an adaptive algorithm originated;

• to study how the theoretical results described for non-hierarchical clus-
tering could be applied/generalized for other clustering techniques.

References
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