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UNSUPERVISED SINGLE-LINK HIERARCHICAL CLUSTERING

DANA AVRAM LUPŞA

Abstract. There are many clustering techniques presented in the litera-
ture. The particularity of single-link clustering is that it rather discovers
the clusters as chains. We aim to identify a method to apply the single link
clustering technique so that: it discovers the first level clusters and the user
doesn’t have to provide any sort of a parameter. We focuses on clusters that
are well separated, and so, which have to maximize the intra-cluster similar-
ity and minimize the inter-cluster similarity. We evaluate the method on a
two dimensional space, that is planar points.

1. Introduction

In the literature, a vast collection of clustering algorithm [6], [2] is available.
There is no clustering technique that is universally applicable in uncovering the
variety of structures present in multidimensional data sets. Studies of clustering
were made from a long time ([4], 1987), but they also constitute recent preocupa-
tions of reserchers ([7],2002). A list of materials about detecting clusters and the
number of clusters can be found in [10].

All clustering algorithms will, when presented with data, produce clusters –
regardless of whether the data contain clusters or not. If the data does contain
clusters, some clustering algorithms may obtain better results than others. We
focus on data sets that do contain clusters. More than that, we will also request
the data to be relatively uniform distributed inside the clusters.

In the literature, the classification is a method that assigns objects to predefined
groups; it is a sort of supervised learning technique [5]. Clustering infers groups
based on inter-object similarity; it tends to be an unsupervised learning technique.
But clustering techniques needs a semi-supervised parameter - that is the number
of clusters, and/or the error or/and a maximum number of steps to be executed.
In this paper we suggest a method applicable to hierarchical clustering that do
not need any parameter. By using single-link hierarchical clustering, the method
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we suggest discover the clusters in which the data is grouped, if there are such
clusters and they are well identified.

2. Hierarchical Clustering

The hierarchical clustering algorithm was first defined by S.C. Johnson in Hi-
erarchical Clustering Schemes , Psychometrika 1967. Given a set of N items to
be clustered, and a N ∗ N distance (or similarity) matrix, the basic process of
hierarchical clustering is this:

Step 1: Start by assigning each item to a cluster, so that if you have N
items, you now have N clusters, each containing just one item. Let the
distances (similarities) between the clusters be the same as the distances
(similarities) between the items they contain.

Step 2: Find the closest (most similar) pair of clusters and merge them
into a single cluster, so that now you have one cluster less.

Step 3: Compute distances (similarities) between the new cluster and each
of the old clusters.

Step 4: Repeat steps 2 and 3 until all items are clustered into a single
cluster of size N .

Step 3 can be done in several ways, which is what distinguishes single-linkage
from complete-linkage and average-linkage clustering.

In single-linkage clustering (also called the connectedness or minimum method),
we consider the distance between one cluster and another cluster to be equal to
the shortest distance from any member of one cluster to any member of the other
cluster. If the data consist of similarities, we consider the similarity between one
cluster and another cluster to be equal to the greatest similarity from any member
of one cluster to any member of the other cluster.

In complete-linkage clustering (also called the diameter or maximum method),
we consider the distance between one cluster and another cluster to be equal to
the greatest distance from any member of one cluster to any member of the other
cluster. In average-linkage clustering, we consider the distance between one cluster
and another cluster to be equal to the average distance from any member of one
cluster to any member of the other cluster.

The complete-link algorithm produces tightly bound or compact clusters . The
single link algorithm, by contrast, suffers from a chaining effect [8]. The single-link
algorithm is more versatile than the complete link algorithm.

In most of the applications, the goal of clustering is to identify some clusters
in the given data. The hierarchical clustering algorithm won’t stop unless we
provide a stop condition. This can be the number of iterations of step 2 and 3,
the number of clusters that we want to obtain or a certain error indicated by an
evaluation of obtained clusters. Those stop conditions are chosen accordingly with
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some extra information about the data of the problem we want to solve. To choose
the appropriate stop condition is not always an easy task.

The problem we address in this paper is to find the clusters by using single-link
hierarchical clustering (which, on the other hand is one of the most simple and
intuitive methods) without having to bother about providing a stop condition. The
idea is to limit the similarity values between elements that can be used to compute
the similarity between 2 clusters (step 3) to the best similarities. We will refer to
the chosen number of best similarities as NBS (Number of Best Similarities).

3. The Basic Idea

The question to which we are going to answer now is how many similarities are
used for building k clusters for N elements, where 1 ≤ k ≤ N .

In single linkage, in each formed cluster, we can build a tree formed by similarity
links used to build that cluster. If ni are the number of the elements in the cluster,
than there are ni − 1 similarities used. With the notation:

UsedSimi(ni) = number of similarities

the next relation holds:

UsedSimi(ni) = ni − 1

Suppose there are k clusters build and the number of elements in each cluster
are n1, n2 . . . , nk . The next relations hold:

(1) n1 + n2 + . . . + nk = N
(2) the total number of used similarities is the sum of the numbers of used

similarities for each cluster; that is:
AllUsedSimi =

∑k
i=1 UsedSimi(ni) =

∑k
i=1(ni − 1) = N − k

(3) 1 ≤ k ≤ N

The idea is to consider only the N − k best similarities to build the clusters.
The clustering process will end when there is no similarity left from the best NBS
that can be used by the clustering process.

During the clustering process, we are not dealing only with the best similarities
among elements to be the similarities that are used for building the cluster. Some
of them are lost for other intra-cluster similarity values. This is one important
property of the method and we are going to find a way to workaround the error
introduced by this property and also to profit by this.

See, for example, the clusters that are produced by using this method and first
N (= 20) best similarities, that are larger than any N − k, in Fig. 1(a) 1.

1The graphics is made by using gnuplot
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(a) NBS=N (b) Adjusted clusters

Figure 1. Clusters without and with elimination of singular elements

Some of the best similarities are extra-links 2 inside the clusters that are built.
The number N − k is too small, the chosen NBS must consider also that the
extra-links in the clusters are similarities values that can have large value but will
not be used by the algorithm. On the other hand, our formula depends on k and
this is an undesired thing. Consequently, if we consider as NBS the maximum
value that can be obtained by the above formula, we accomplish two requirements:
get a larger value as NBS in order to ignore some extra-links inside the cluster
and also have the advantages of having a NBS value that does not depend on k:

NBS1 : maxk(N − k) = N

On the other hand, the decision to take only the best N similarity values remains
sometimes a little too strong, as we can see in Fig. 1(a). The reason is that
maximization of (N−k) does not cover enough extra-links inside the clusters. But
we can consider that, there is still a good chance that NBS correctly identifies
clusters nuclei.

If we consider that the clusters nuclei are correctly identified, we can improve
the result by continuing to group clusters with one element (in single-link hierar-
chical manner) until the moment when the clusters that must be unified are nuclei
determined by NBS.

The question that arises is what can be considered as a cluster nucleus and
when an element is singular3, that means that is not part of a nucleus. If the
elements are grouped in clusters, we expect that there are elements enough close
so that they would be put together in a cluster - for each natural cluster which
the data contains. Consequently, we will consider as singular elements the ones
that are singular in clusters, and as nuclei - clusters with more than one element.

2In this case, we have notated as extra-link the links among elements in a cluster that are
not used by the single-link clustering algorithm to form the cluster

3We say that an element is singular if it forms a cluster by himself
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By applying this method on the same data sets as in Fig. 1(a), the cluster set
build in this case is indicated on Fig. 1(b).

4. The Choice of NBS

4.1. Implementation Issues. We evaluate our method by hand, by using sets
of points in a two dimensional space and evaluating the computed clusters. We
use as similarity a measure derived from the Euclidian metric distance. If d is the
Euclidian distance between two points p and q:

d(p, q) =

√√√√
2∑

i=1

(pi − qi)2

then the similarity between them can be computed by using the formula:

similarity(p, q) =
1

d(p, q)
(A)

Of course, this metrics holds if there are not 2 elements with the same coordinates.
If this condition is not satisfied, we can use:

similarity(p, q) =
1

d(p, q) + 1
(B)

In our experiments, we are in case when there are not 2 elements with the same
coordinates, and we have taken formula (A) for computing the similarities.

Computation with real values introduce small errors. On the other hand, we are
not interested to put in different clusters the elements that are closest. That is why
we are interested in ignoring small variations of similarities. When we identify the
best similarity values, we consider as acceptable a variation that is not very small
and that depends of the similarity values. In calculus, the variation is interpreted
as an acceptable error. We used an error of 10% from medium difference between
two similarities values, computed with the next formula:

error = (max−min)
(number of similarities)

= 1
10 × max−min

n∗(n−1)/2)

= 1
5 × max−min

n∗(n−1)

where:
max: maximum similarity value
min: the minimum similarity value, greater than 0

On the other hand, we are working with a N ∗N similarity matrix, where the
elements on the main diagonal have a special value and are not used. Each other
similarity value from the matrix is repeated twice. This means that we use a
number of 2 ∗NBS1 values from the similarity matrix.
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4.2. Fine tuning the parameter. The way in which we build the value NBS
= N would say that the choice is close to the best one, but it is not necessary the
best choice. In order to test this, we will establish a measure of cluster accuracy
and we will study the effects of small variation of NBS value.

As is universally accepted there is no universal measure for evaluating cluster
sets. We choose for evaluation the next measure:

measure = minCi,Cj
dist(Ci, Cj)−minp∈Ci(maxp,q∈Ci

dist(p, q))

and we will earn from the fact that this measure performs well if there are no
singular points that must be part of a cluster and they are not. Because it is a
measure of optimum (max or min), not of average, and one wrong cluster will
modify the result of the evaluation. As we continue clustering starting from a
determined set of nuclei and as long as the set of nuclei remains unchanged, we
get a good chance of eliminating singular points, and so, eliminating the wrong
clusters.

The method we propose is to take as the result the set built for NBS greater
than N and smaller than 3/2N that get a score value at least double compared to
the score for the set built for N , or the set built for NBS = N otherwise. We ask
for the score value to be double because we considered that, if the improvements
are not big, than the better score could appear by cause of the natural tendency of
the evaluation function to grow with the decrease of the number of the determined
clusters set.

We experimented the result by taking as NBS the values that approximate the
interval : N−N/2 . . . N +N/2. That is, we considered as the first best similarities
those with the values ranked between (1; N) . . . (1; 3N) from the N ∗N similarities
of the similarity matrix. The distinct sets of obtained clusters are shown in Fig.
2. Each set of clusters are accompanied by a short explanation as follows:

• on the first line: the score of the cluster set
• on the second line: the smallest value of 2∗NBS (value ranks are between

N and 3 ∗N) that obtain one set of clusters

One very important thing the experiment enlightens is that the result is not
strongly dependent of the chosen NBS value, in the sense that small variations
of NBS keep the result (clusters set) unchanged. Note that there are only 9
distinct cluster sets for a NBS value that vary between NBS = N = 46 and
NBS = 3N = 138, that is for 92 distinct values for NBS.

The experiment confirms that the best result is very close to NBS = N . An-
other thing the experiments points is that when NBS grows bigger, the clusters
grow bigger too and are less well identified, while the evaluation function value
grows either. That is why we cannot use only the evaluation function to identify
the best set of clusters identified during the hierarchical clustering process.
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Figure 2. All different clusters levels when considering best sim-
ilarity values, with ranks between (1 and N/2) and (1 and 3N/2

We also studied the behavior of other 10 data sets. Based on the results of these
experiments, we are going to improve the method by taking as result the first set
of clusters built for an NBS value that satisfies NBS ≥ N and NBS ≤ N +N/2,
if the set is evaluated as being better than the set build for NBS = N .

4.3. Best choice. Experimental results. We have taken 5 different types of
input sets, with 2 examples for each type. That would be a collection of 10 data
sets. We choose data with characteristics presented in the table 1.

The results of clustering processes are presented in Fig. 3.
Evaluation. We take as precision the elements that are considered by a human

subject that are well grouped. We are looking for the most general clusters a
human judge would identify. As we evaluated, there are 8 correct cluster results.
We indicate the sets 4A and 5A as not being correct. That would indicate a
percentage of 80% correct clusters.

4.4. Discussion of special cases. One case of bad distributed elements is the
case when there should be clusters with few elements in a cluster. The figure 4
presents cluster changes with the variation of the number of points.
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Figure 3. Clusters for different values for NBS

If the elements are not relatively uniform distributed inside the clusters, the
method won’t always obtain good results. In figures 4 and 5 we have the results
from data more or less well distributed.

Figure 5 illustrates that, if the clusters are well identified, the result suffers very
little from small variation of elements’ coordinates.

One could say that the cluster set 3 in the fig. 5 is inaccurate. But what would
be the result if the distances between the elements in clusters 3, 4, 5, 6 are modified
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Data characteristic Identification
in fig

well grouped in clusters 1, 2, 3
well grouped in clusters
and known as with problem for hierarchical clustering
(there are differences between single-link and complete-
link hierarchical clustering)

2

bad cluster identification
many points but sparse data

5

small number of elements in a cluster 4
many clusters with a small number of elements in a cluster 3A
small number of clusters with many elements in a cluster 2B

Table 1. Characterisitc of the data in the figure 3

Figure 4. Clustering over reduced number of elements
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Figure 5. Clusters built for small variation of elements coordinates

in order to have close value? The result is represented in the 4th data set in the
figure.

As we can see in figure 5, the results for elements that are not uniform distrib-
uted in a cluster are disputable also for human judges. Consider the clusters from
the figure 6. Which of them do we have to consider best? On the other hand, the
elements coordinnates in the two images in the figure are the same. But they are
represented to a different scale. In one the separation among clusters is observable,
and in the other is not. A human judge won’t observe that. For this data set our
algorithm identifies clusters indicated in figure.

Sparse data is also an example of not relatively uniform distributed elements
in a cluster. In this case, the identified clusters are not very close with those
identified by a human judge. If the result are good or not is disputable, as we can
see in the figure 3, sets 5A and 5B. The explanation is that the result for sparse
data is better when the clusters are more compact. This corresponds to smaller
value for NBS.

5. Conclusions and Future Directions

The algorithms we build have the advantage to build the clusters without the
need of some stop condition, so it is a really unsupervised method. We consider
the result as good, as long as the tests indicate an accuracy of about 90% for data
‘well‘ grouped in clusters. The accuracy of the results depends on dispersion of
the elements inside the ‘ideal‘ cluster and the number of the elements inside a
cluster (the bigger, the better). Usually, the algorithm does not work so well if
the clusters in the data do not have many elements, because the number of all
elements is small or the data is sparse.
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Figure 6

One of advantage of the method is that the result do not depend directly from
the NBS, there is an interval of values for which the results are the same.

The method was built for cases when clusters are ‘well identified‘ and the el-
ements are relatively uniform distributed inside the clusters. But, for any sparse
data, there is no guarantee that there is a human judge that identifies clusters.
This is the drawback of the suggested mechanism, if we want to compare it with
the absolute case of a human judge. As is known, in case of sparse data, the
complete-link method is more appropriate than the single-link.

One of the future directions we are working on is to develop a similar method
also for the complete-link hierarchical clustering and compare the results of the
two methods.

We also intend to apply this method to pattern recognition in image processing,
because we think that this is a domain where the method should apply with best
result.
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