
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 1, 2005

PARALLEL LAGRANGE INTERPOLATION ON
EXTENDED FIBONACCI CUBES

IOANA ZELINA

Abstract. In this paper is presented a parallel algorithm for computing a
Lagrange interpolation on a Extended Fibonacci Cube EFC 1(n).The algo-
rithm consists of three phases: initialisation phase, main phase in wich the
Lagrange polynomials are computed and final phase in wich the terms of the
interpolation formula are added together.

1. Introduction

Interpolation techniques are of great importance in numerical analysis since they
are used in many science and engineering domains. The Lagrange interpolation
for a given set of points (x1, y1), (x2, y2),..., (xN , yN ) and a value x is defined as

(1.1) f(x) =
N∑

i=1

yi × Li(x)

where Li, i = 1, N are the Lagrange polynomials given by the formula

(1.2) Li(x) =
(x− x0) . . . (x− xi−1)(x− xi+1) . . . (x− xN )

(xi − x0) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xN )
When the number of points N is very large a long computation time and a large

storage capacity may be required to carry out the calculation. To overcome this,
a parallel implementation would be appropriate. This kind of parallel algorithms
were introduced for Lagrange interpolation for different topologies: Goertzel [2] has
introduced a parallel algorithm for a tree topology with N processors augmented
with ring connections which requires N/2 + O(log N) steps each composed of two
substractions and four multiplications; a parallel algorithm has been discussed
in [6] which uses a k-ary n-cube consisting of O(kn + kn) steps, each with 4
multiplications and substractions for N = kn node interpolation. In [5] is described
a parallel algorithm for computing a N = n!-node Lagrange interpolation on a
n-star graph. The algorithm in [5] consists of three phases and requires n!/2
steps, each consisting of 4 multiplications, 4 substractions and one communication
operation. In [7] this parallel algorithm is applied for computing an N = n2n

point Lagrange interpolation on an n-dimensional cube-connected cycles (CCCn).

Received by the editors: February 18, 2005.

105



106 IOANA ZELINA

The method can be applied for any Hamiltonian network, the performances
depending on the communication abilities of the host network.

In this paper the algorithm described in [5] is applied to a Extended Fibonacci
Cube topology. The algorithm relies on all-to-all broadcast communication at
some stages during computation. This is achieved by using a gossiping algorithm
on a ring embedded in the host network having its all nodes.

2. Preliminaries

Due to the regularity, logarithmic diameter, logarithmic node degrees, etc. of
hypercube interconnection networks, they are used by most researchers. The
hypercube provides a rich interconnection structure which permits many other
topology to be emulated. Nevertheless, when dimension of hypercube increases,
the number of nodes increases too fast. Because of this, Hsu [3] developed Fi-
bonacci Cubes and they are more sparse than the hypercubes and Wu [8] devel-
oped Extended Fibonacci Cubes by changing the initial conditions. The Extended
Fibonacci Cubes are also more sparse than the hypercubes.

One third of Fibonacci Cubes are Hamiltonian, however, all of Extended Fi-
bonacci Cubes are Hamiltonian. Both of these interconnection can be considered
as nodes faulty with incident edges hypercubes.

Fibonacci Cubes and Extended Fibonacci Cubes
Extended Fibonacci Cubes (EFC) topology was proposed by Wu [1] and this

topology is based on the Fibonacci Cube proposed by Hsu [3]. Both topologies
use the Fibonacci series and initial conditions for topologies can be different from
Fibonacci series initial conditions.

An kth (k = 1, 2) order Extended Fibonacci Cube is denoted by EFCk(n)
where n − 2 is the length of bitstring representing the address of nodes in EFC.
EFCk(n) is a subgraph of the corresponding hypercube. Each node of EFCk(n)
is addressed with Fibonacci Code (FC). The simplest version of these cubes series
is the Fibonacci Cubes. The Fibonacci Cube (FC(n)) can be described as below.

Definition 2.1. [Fibonacci Cube] Assume the graphs FC(n) = (V (n), E(n)),
FC(n−1) = (V (n−1), E(n−1)) and FC(n−2) = (V (n−2), E(n−2)). We define
the Fibonacci Cube using the recursion for the nodes set as
V (n) = 0‖V (n − 1) ∪ 10‖V (n − 2), where ‖ denotes the concatenation of two
bit-strings. Two nodes in FC(n) are connected by an edge in E(n) if and only if
their labels differ exactly in 1-bit position. The initial condition for recursion is
V (2) = ∅ and V (3) = {0, 1}.
Definition 2.2. [Extended Fibonacci Cube] Let EFC1(n) = (V1(n), E1(n)), where
V1(n) is the set of nodes and E1(n) is the set of edges in EFC1(n), and
EFC1(n− 1) = (V1(n− 1), E1(n− 1)), EFC1(n− 2) = (V1(n− 2), E1(n− 2)).

EFC1(n) can be defined recursively by using EFC1(n − 1) and EFC1(n − 2) as
it follows: V1(n) = 0‖V1(n − 1) ∪ 10‖V1(n − 2) where ‖ denotes the concatena-
tion of two strings. The initial condition for recursion is V1(3) = {0, 1} and
V1(4) = {00, 10, 11, 01}. Two nodes in EFC1(n) are connected if and only if their
address representations differ in exactly 1-bit position.



PARALLEL LAGRANGE INTERPOLATION 107

Some EFC1(n) are shown in Fig.1 where n = 3, 4, 5, 6 and each EFC1(n)
consists of an EFC1(n− 1) and an EFC1(n− 2).

0 1

10 11

00 01

011 001

010 000 100

101

0010 0011

0000
0001

1010 1011

1000

1001

0100 0101

EFC1(3)

EFC1(4) EFC1(5)

Fig. 1

EFC1(6)

It is known that while less than one third of Fibonacci cubes are hamiltonian,
all of EFCk(n) are Hamiltonian. This can be proved using inductive reasoning on
n, where n = 4 and n = 5 are the induction basis. In Fig. 1 a hamiltonian cycle
is shown with bold links. This means that ring can be embedded into EFCk(n)
with dilation and congestion 1. FC(n) is a proper subgraph of EFC1(n).

There is a Hamming distance path in EFC1(n) where Hamming distance is
the exclusive-or operation on both addresses of nodes and this distance is equal
to Hamming distance. The diameter of EFC1(n) is n − 2 and node degrees are
between

⌈
n
3

⌉
and n− 2.

By changing the initial conditions for EFC1(n), another Extended Fibonnaci
Cube can be extracted, denoted as EFC2(n) with initial conditions
V2(4) = {00, 10, 11, 01} and V2(5) = {000, 100, 101, 111, 110, 010, 011, 001}.

EFC1(n) is a proper subgraph of EFC2(n). The generated FC for EFC1(n)
and EFC2(n) are mutually disjoint.

We denote by N the number of nodes in EFC1(n).

3. The Parallel Algorithm

The parallel algorithm is based on the algorithm described in [5] for computing
a N = n! node Lagrange interpolation on a n-star graph. We shall apply this
algorithm for a network using an n- extended Fibonacci cube EFC1(n) topology
with bidirectional links between nodes. Let N be the number of the nodes in
EFC1(n).



108 IOANA ZELINA

The computation is carried out in three phases: initialisation, main and final
phase. In the initialisation phase, the set of points to be interpolated are allocated
to the nodes, one point for each node. Then, in the main phase, the Lagrange
polynomials Li(x),i = 1, N are computed and in the final phase the terms are
added together to obtain the final result y = f(x).

We denote by Pw the processor in the node of the extended Fibonacci cube
EFC1(n) with the binary representation w. Each processor Pw has six registers
denoted R1, R2, R3, R4, R5, R6 and we indicate by Pw(Ri) the content of the
register Ri in the processor Pw, i = 1, 6, w ∈ V1(n) and by P

(t)
w (Ri), i = 1, 6,

w ∈ V1(n) the content of the register Ri in the processor Pw after step t. In each
node, registers R1, R2, R3, R4 will hold the terms required for computing the
polynomials and registers R5, R6 will be used to implement an all-to-all broadcast
algorithm in a ring embedded in the host network EFC1(n) during the main phase.

The EFC1(n) = (V (n), E(n)) is hamiltonian. When constructing a hamilton-
ian cycle in EFC1(n), two arrays, Next[w] and Previous[w], which indicate the
nodes before, respectively after node w, w ∈ V (n) in the embedded cycle can also
be constructed. For any node Pw in the embedded hamiltonian ring, the next and
previous nodes are PNext[w], respectively PPrevious[w]. Those arrays should have
been set to their proper values before starting the initialisation phase.

3.1. Initialisation phase. The values x, Next[w], Previous[w], (xi, yi) are assig-
nated to the processor Pw to be stored in the local memory where i is the order
of the Fibonacci number w = fi, i = 1, N with initial conditions from Definition
2.2. The registers R1, R2, R3, R4, R5, R6 of each processor are set to their initial
values, for all w ∈ V (n), in parallel:

P
(0)
w (R1) = 1; P

(0)
w (R2) = 1; P

(0)
w (R3) = xi; P

(0)
w (R1) = xi;

P
(0)
w (R5) = x− xi; P

(0)
w (R6) = x− xi;

3.2. Main phase. In this phase, each node Pw uses the values Next[w] and
Previous[w] to communicate with the next and previous node in the embedded
hamiltonian cycle. To compute the terms Li(x) all the processors perform the
following sequence simultaneously:

For t = 0, 1, ..., N/2− 2 do

P
(t+1)
w (R3) ⇐ P

(t)
Next[w](R3);

P
(t+1)
w (R4) ⇐ P

(t)
Pr evious[w](R4);

P
(t+1)
w (R5) ⇐ P

(t)
Next[w](R5);

P
(t+1)
w (R6) ⇐ P

(t)
Pr evious[w](R6);

P
(t+1)
w (R1) = P

(t+1)
w (R1)× P

(t+1)
w (R5)× P

(t+1)
w (R6);

P
(t+1)
w (R2) = P

(t+1)
w (R2)× (xi − P

(t+1)
w (R3))× (xi − P

(t+1)
w (R4));

end for;



PARALLEL LAGRANGE INTERPOLATION 109

P
(N/2)
w (R3) ⇐ P

(N/2−1)
Next[w] (R3);

P
(N/2)
w (R1) = P

(N/2)
w (R1)× P

(N/2)
w (R5);

P
(N/2)
w (R2) = P

(N/2)
w (R2)× (xi − P

(N/2)
w (R3));

The last iteration is used to avoid multiplying the terms (x−xN/2) and (xi−xN/2)
twice.

Each step consists of two data communications (the first two respectively the
last two communications can be realized in parallel because of bidirectional links
between nodes), 2 substractions and 4 multiplications.

To conclude the main phase, all the processors execute the instruction

P (N/2+1)
w (R1) =

P
(N/2)
w (R1)

P
(N/2)
w (R2)

× yi.

Therefore, at the end of this phase Pw(R1) = Li(x)× yi.
In the main phase, each processor performs N data communications, 2N − 1

multiplications, N − 1 substractions and one division.

3.3. The Final Phase. In this phase, the contents of register R1 in all nodes are
added together to obtain the final result. We can use for this a gossiping method
for a ring similar to the one used in the main phase but we can also use a method
similar to the addition of the content of the processors in a hypercube network
topology.

Remark that if a node w ∈ V (n) in EFC1(n) is labeled with a bit string
having 1 on his first position, w = 1u2u3 . . . un−3 then u2 = 0 and the node
w′ = u3 . . . un−3 ∈ V (n − 2) is a node in EFC1(n − 2). A node w ∈ V (n) in
EFC1(n) is labeled with a bit string having 0 on his first position,
w = 0u2u3 . . . un−3 then the node w′ = u2u3 . . . un−3 ∈ V (n − 1) is a node in
EFC1(n−1). If we add simultaneously the content of registers R1 in all the nodes
w = 1u2u3 . . . un−3 to the content of registers R1 in the corresponding nodes
v = 0u2u3 . . . un−3 then we reduce the size of the EFC from n to n − 1. So we
can add together the partial results accumulated in registers R1 of all nodes in n
steps, each consisting of one addition and two communication operations. Each
step reduces the size of problem by one until the last step, (n − 2)th step, which
complete the computation having stored the final result in register R1 of processor
P0...0.

For i = 1, 2, ..., n− 2 do
For all w = 0i−11ui+1 . . . un−2 do in parallel

P0iui+1...un−2(R1) = P0i−11ui+1...un−2(R1) + P0iui+1...un−2(R1);

end for;



110 IOANA ZELINA

End for;

This phase includes n− 2 additions and n− 2 communication operations.
Let n be the order of the Extended Fibonacci Cube EFC1 (n) and N be the

dimension of the EFC1 (n), i.e. the extended Fibonacci number defined by the
recursion fn = fn−1 + fn−2, n ≥ 2, f0 = 2, f1 = 4.

Theorem 3.1. The parallel algorithm presented carries out the computation of a
N -point Lagrange interpolation on a Extended Fibonacci Cube EFC1 (n) in a total
time of O (N).

Proof: The algorithm computes a N -point interpolation, in three phases, re-
quiring in total N + n− 2 data communications, n− 2 additions, 2N − 1 multipli-
cations, N − 1 substractions and one division.

Remark 3.1. The parallel algorithm carries out in a total time of O(N) while the
running time for such an interpolation on a single-processor system is of O(N2).

References

[1] Akl, S., Parallel Computation: Models and Methods, Prentice Hall, 1997
[2] Goertzel, B., Lagrange interpolation on a tree of processors with ring connections, JPDC,

22, pp.321-333, 1994
[3] Hsu, W.J., Fibonacci Cube- A New Interconnection Topology, IEEE Trans. on Parallel and

Distributed Systems, vol.4, no.1, pp.3-12, 1993
[4] Karci, A., New Interconnection Networks: Fibonacci Cube and Extended Fibonacci Cubes

Based Hierarchic Networks, Proc. of 15th ICOIN, 2001
[5] Sarbazi-Azad, H., Ould-Khaoma, M., Mackenzie, L.M., A Parallel Lagrange Interpolation

on the Star Graph, Proc. 14th IPDPS, Cancun, Mexico, pp.777, 2000
[6] Sarbazi-Azad, H., Ould-Khaoma, M., Mackenzie, L.M., A Parallel Lagrange Interpolation

on k-ary n-cubes, LNCS1557, pp.85-95, 1999
[7] Sarbazi-Azad, H., Ould-Khaoma, M., Mackenzie, L.M., An Efficient Parallel Algorithm

for Lagrange Interpolation and Its Performance, Proc. 4th Int.Conf. on High Performance
Conputing in Asia Pacific Region, vol 2, Beijing, China, pp.593, 2000

[8] Wu, J., Extended Fibonacci Cubes, IEEE Trans. on Parallel and Distributed Systems, vol.8,
no.12, pp.1203-1210, 1997

North University of Baia Mare, Faculty of Science, Department of Mathematics
and Computer Science, Victoriei 76, Baia Mare, Romania

E-mail address: ioanazelina@yahoo.com


