
STUDIA UNIV. BABE��BOLYAI, INFORMATICA, Volume L, Number 1, 2005

REDESIGN BASED OPTIMIZATION FOR DISTRIBUTED
DATABASES

HOREA-ADRIAN GREBLA, ANCA GOG

Abstract. The execution process of the queries in distributed databases
require accurate estimations and predictions for performance characteristics.
The problems of data allocation and query optimization done by means of
mobile agents and evolutionary algorithms are considered. These problems
still present a challenge because of the dynamic changes in number of com-
ponents and architectural complexity of nowadays system topologies. The
distributed system is modeled as a graph structure on which is de�ned a dy-
namic cost vector. The cost vector remains consistent, relevant, by use of
mobile agents performing cost statistics and vector updates. An evolutionary
technique for the re-design phase is proposed. Experimental results prove the
e�ciency of the proposed technique.

Keywords: Distributed Databases, Data Fragmentation, Data Alloca-
tion, Evolutionary Computation, Mobile agents

1. Introduction
Distributed databases (DDBs) have become necessity as networks expand and

organizations perform geographically distributed operations. International com-
panies store their data at di�erent sites of a computer network, possibly in a va-
riety of forms, ranging from �at �les, to hierarchical, relational or object-oriented
databases. The network itself consists of variety of transmission media, network
topologies or network speeds. Design approaches for distributed databases have
to consider various factors that can a�ect performance: CPU time, data transmis-
sion time, disk I/O operation time. Such distributed system architecture reveals
some data management challenges. The system needs to be highly scalable with
no critical failure points. In accordance to nowadays computing needs, the latency
must not a�ect the performance of real-time applications. The aim is to provide
uniform access to physically distributed data, no mater what the distance between
the access location and places data resides. A possible approach is to represent the
DDB as a graph and to perform system's management automatically by means

2000 Mathematics Subject Classi�cation. 62E99, 68T99.
1998 CR Categories and Descriptors. C.2.4 [Computer Systems Organization]:

Computer-Communication Networks � Distributed systems I.2.8 [Arti�cial Intelligence]:
Problem solving, Control methods, and Search � Heuristic methods;

97



98 HOREA-ADRIAN GREBLA, ANCA GOG

of mobile agents. An evolutionary algorithm is proposed to solve the problem of
re-fragmentation and re-allocation of data.

2. Distributed Database Design Issues
Distributed database management system [8] has to ensure local applications

for each computational component as well as global applications on more com-
putational machines; it also has to provide a high-level query language with dis-
tributed query power, for distributed applications development. Must be ensured
transparency levels that confer the image of a unique database. To improve the
performance of global queries, data can be partitioned and spread over the sys-
tem's components. A distributed database system supports data fragmentation
if a relation stored within can be divided in pieces called fragments. These frag-
ments can be stored on di�erent sites residing on the same or di�erent machines.
The aim is to store the fragments closer to where they are more frequently used
in order to achieve best performance. The partitions can be created horizontal,
vertical or mixed (the combination of horizontal and vertical fragmentation).

Let R[A1,A2,. . . ,An] be a relation where Ai, i = 1, . . . , n are attributes. A
horizontal fragment can be obtained by applying a restriction: Ri = σcondi(R),
where condi is the guard condition. So we can rebuild the original relation by
union as follows:

R = R1 ∪ R2 ∪ . . .∪ Rk.
A vertical fragment is obtained by a projection operation:

Ri =
∏

{Ax1,Ax2,...,Axp}
(R),

where Axi, i = 1, . . . , p are attributes. The initial relation can be reconstructed
by join of the fragments:

R = R1

⊗
R2

⊗
. . .

⊗
Rl.

A DDB system can be represented [5] as a graph where the sites are given by
(V), the set of vertices, and the edges (E) given by the direct connections between
sites. Each edge has associated a cost, but this cost will be examined later in
this paper. For exempli�cation we consider in Figure 1 a distributed system and
obtain in Figure 2 the corresponding graph representation.

The system must preserve distributed data independence [9], such that any
change of physical location of data must not disturb application functionality. A
good management of DDBs implies a considerable e�ort in the design phase of the
system and also implies a redesign phase for performance tuning. One of the design
phase component that raise problems represent data fragmentation and allocation.
The biggest improvement in system's response can be achieved by fragmentation
and reallocation in the design re�nement phase. The use of mobile agents can
bring great performance value to the system because a software agent [10] can act
autonomously on behalf of the administrator. The elements of the system do not



REDESIGN BASED OPTIMIZATION FOR DISTRIBUTED DATABASES 99

Figure 1. Distributed database system

Figure 2. Corresponding graph of the system from Figure 1

have to be connected all the time, agents can travel in the network and execute at
di�erent hosts by taking their state and implementation with them. Agents can
be intelligent, take decisions and react to environment changes to perform their
actions, and most important, they can cooperate to ful�ll their common goal.

3. Overview and Architecture of the System
In what follows, a distributed database system architecture where design relies

on the graph representation and system management improvement by use of agents
is proposed. An agent based architecture with distributed access and concurrent
queries in heterogeneous database system is described. The considered architecture
provides high scalability and performance optimization. The main improvement
is the manner of cost de�nition between sites:
• First, we de�ne the initial cost assigned by the system designer to an edge; this
cost is estimated based on network transfer rate, data access time and computing
power on a site. We call this initial estimated cost.
• At some given times we can obtain more accurate cost in the system; we de�ne
this cost the up-to-date computed cost.



100 HOREA-ADRIAN GREBLA, ANCA GOG

Translator agents perform the translation of local names to global names and
provide a common language for distributed queries assuring local database man-
agement system independence.

Retriever agents collect data from corresponding fragments by communicating
with Translators. In fact they build the query in the agent common language and
ask the translators for results.

Optimizer can be unique for the entire system or can be cloned; it contains the
query optimizer. One role of the Optimizer is to build up-to-date computed cost
from statistics for the sites with respect to the amount of data accessed on that
site. The proposed architecture is depicted in Figure 3.

Figure 3. Proposed architecture

4. Evolutionary Fragmentation and Allocation Algorithm in
Distributed Databases

The problem of database fragmentation and data allocation is modeled as a
graph. We have to distribute m tuples to n nodes of the graph. The costs of the
edges between the vertexes of the graph are given. Also, statistics referring to the
frequency of the requested tuples in the graph are given (computed by agents).
The tuples' distribution can be reduced to an optimization problem which goal
is to minimize the costs generated by the queries in the graph. An evolution-
ary algorithm is proposed to solve this NP-Complete problem [6]. The proposed
algorithm is called Evolutionary Fragmentation and Allocation Algorithm in Dis-
tributed Databases (EFA algorithm).

A �xed size population is used in the proposed algorithm. The m tuples that
have to be distributed to nodes will be denoted by t1, t2, . . . , tm. There are no
restrictions regarding the minimum or the maximum number of tuples contained
by a node. A potential solution of the problem (a chromosome) is a string of



REDESIGN BASED OPTIMIZATION FOR DISTRIBUTED DATABASES 101

constant length {x1, x2, . . . , xm}, where the gene xi, xi ∈ {1, 2, . . . , n}, indicates
to which node the tuple i belongs.

The potential solutions are evaluated by means of a real-valued �tness function
F, F : X → R, where X denotes the space of potential solutions. The �tness of
a chromosome takes into account the costs of the edges between nodes and the
statistics regarding the frequency of the requested tuples in the graph:

F (x) =
∑n

i=1

∑m
j=1 fijciNj ,

where fij , i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , m}, represents the frequency of the
requests of the tuple j from the node i of the graph. Also, ciNj

, i ∈ {1, 2, . . . , n},
j ∈ {1, 2, . . . ,m}, represents the cost of the edges between the node i and the
node that contains the tuple j, denoted by Nj . The �tness function F is to be
minimized.

Rank-based selection for recombination mechanism [4], two points crossover
and weak mutation operator [1] are considered for the proposed algorithm [3].
The best from parent and o�spring enters the new generation [2].

The algorithm ends after a certain number of generations that did not improve
the best solution of the generation [7]. The best solution obtained during the
search process is considered to be the solution of the problem.

5. Experimental results
A graph having �ve nodes is considered (n = 5). Let us denote the �ve nodes

by N1, N2, N3, N4, N5. The associated costs for the edges between the given
nodes are depicted in Figure 4. Remark: We are interested only in the direct cost

Figure 4. Proposed architecture

between two nodes, and that is why there are nodes without edges between them,
even if there could be a path between the two nodes by using intermediate nodes.

A dataset of 1.200.000 tuples is given. The given tuples are denoted by t1, t2, . . .,
tm, where m represents the number of tuples. The existing dataset fragmentation
and distribution of tuples in nodes are depicted in the Table 1.



102 HOREA-ADRIAN GREBLA, ANCA GOG
Table 1. Dataset fragmentation and distribution of tuples in nodes.

Node Dataset fragmentation Number of tuples/node
N1 t1 − t100.000 100.000
N2 t100.001 − t380.000 280.000
N3 t380.001 − t540.000 160.000
N4 t540.001 − t720.000 180.000
N5 t720.001 − t1.200.000 480.000

The statistics regarding the frequency of requests of the tuples from each node
are depicted in Tables 2 - 6.

Table 2. The frequency of requests of the tuples from the node N1

Tuples Frequency
t40.001 − t90.000 4
t420.001 − t560.000 10
t610.001 − t730.000 12
t980.001 − t1.100.000 5

Table 3. The frequency of requests of the tuples from the node N2

Tuples Frequency
t250.001 − t330.000 2
t560.001 − t680.000 14
t1.100.001 − t1.200.000 7

Table 4. The frequency of requests of the tuples from the node N3

Tuples Frequency
t1 − t100.000 3
t250.001 − t290.000 10
t880.001 − t970.000 9
t990.001 − t1.000.000 16

The tuples that do not appear in the tables containing the frequency of requests
are never requested. They will remain inside the nodes that contain them before
applying the EFA algorithm. The proposed EFA algorithm was applied for data
described above. The chosen values for the algorithm parameters are written in
Table 7.



REDESIGN BASED OPTIMIZATION FOR DISTRIBUTED DATABASES 103
Table 5. The frequency of requests of the tuples from the node N4

Tuples Frequency
t100.001 − t170.000 3
t220.001 − t330.000 7
t450.001 − t560.000 13
t680.001 − t770.000 8

Table 6. The frequency of requests of the tuples from the node N5

Tuples Frequency
t200.001 − t260.000 12
t700.001 − t830.000 6
t920.001 − t980.000 1

Table 7. The EFA algorithm parameters

Population
size

Number of genera-
tions that did not
improve the current
solution

Probability of
recombination

Probability of
mutation

200 50 0.7 0.1

After applying EFA algorithm, the way the tuples are redistributed to the nodes
of the graph, by taking into account the frequency of the requests of the tuples, is
described in Table 8.

6. Conclusions and future work
An evolutionary algorithm called EFA was proposed for the redesign phase,

meaning re-fragmentation and re-allocation, in our distributed system. The con-
sidered problem is a NP-Complete one. EFA was successfully applied and experi-
mental results have proved the e�ciency of the proposed algorithm.

As future work, the method can be improved by computing the costs weighted
with factors like local interest for fragments (recommend replication or not), real-
time response importance (some applications do not need real-time response), data
access frequency (balance sheet data may be consulted once in a month).

The weight of the factors in the cost computation can be changed in time, also
changes in network topology or transmission media can in�uence the response
time. The statistics are useful for rebalancing the system by re-computing the
costs to obtain best response time for all queries on any site.



104 HOREA-ADRIAN GREBLA, ANCA GOG
Table 8. Reallocation of tuples in nodes after applying EFA.

Node Dataset refragmentation Number of tuples/node
N1 t680.001 − t770.000, t1.000.001 −

t1.100.000

190.000

N2 t170.001 − t200.000, t250.001 − t260.000

t330.001 − t380.000, t560.001 − t610.000

t770.001 − t830.000, t970.001 − t980.000

t1.100.001 − t1.200.000

310.000

N3 t1 − t40.000, t90.000 − t100.000

t260.001 − t330.000, t380.001 − t420.000

t880.001− t970.000, t990.001− t1.000.000

260.000

N4 t40.001 − t90.000, t100.001 − t170.000

t420.001 − t560.000, t980.001 − t990.000

270.000

N5 t200.001 − t250.000, t610.001 − t680.000

t830.001 − t880.000

170.000

References
[1] Bäck, T., Fogel, D.B., Michalewicz, Z. (Editors), Handbook of Evolutionary Computation,

Institute of Physics Publishing, Bristol and Oxford University Press, New York, 1997.
[2] Bäck, T., Optimal mutation rates in genetic search, Proceedings of the 5th International

Conference On Genetic Algorithms, Ed. S. Forrest, Morgan Kaufmann, San Mateo, CA,
2-8, 1993.

[3] Dumitrescu, D., Lazzerini, B., Jain, L.C, Dumitrescu, A., Evolutionary Computation, CRC
Press, Boca Raton, FL., 2000.

[4] Goldberg, D.E., Deb, K., A comparative analysis of selection schemes used in genetic algo-
rithms, Foundations of Genetic Algorithms G.J.E. Rawlins (Ed.), Morgan Kaufmann, San
Mateo, CA, 69-93, 1991.

[5] Moldovan, G., Reorganization of a Distributed Database, Babes-Bolyai University, Seminar
of Models, Structures and Information Processing, Preprint nr. 5, p. 3-10, 1984.

[6] Levin, K. D., Morgan, H. L., Optimizing distributed databases-A framework for research,
Proceedings of AFZPS NCC, vol. 44. AFIPS Press, pp. 473-478, 1975.

[7] Mitchell, M., An Introduction to Genetic Algorithms, MIT Press, Cambridge, MA, 1996.
[8] Oszu, M. T., Valduriez, P., Principles of Distributed Database Systems, Prentice Hall, En-

glewood Cli�s, NJ, 1999.
[9] Piattini, M. and Diaz, O., Advanced Database Technology and Design, Artech House, Inc.

685 Canton Street Norwood, MA 02062, 2000.
[10] Weiss, G., Multiagent System, A Modern Approach to Distributed Arti�cial Intelligence,

MIT Press , USA, 2000.

Babes-Bolyai University of Cluj-Napoca, Faculty of Mathematics and Computer
Science, Computer Science Department

E-mail address: horea,anca@cs.ubbcluj.ro


