
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 1, 2005

A PROGRAMMING INTERFACE FOR NON-HIERACHICAL
CLUSTERING

GABRIELA ŞERBAN

Abstract. Clustering is one of the important techniques in Data Mining.
Clustering methods aim at grouping objects into clusters, so that the objects
within a cluster are more similar to each other than objects in different clus-
ters. The similarity between two objects is defined by a distance function.
Clustering techniques are used in a variety of domains like: Natural Language
Processing, Databases, HealthCare. In this paper we present a new program-
ming interface for non-hierarchical clustering. Using this interface, we can
simply develop non-hierarchical clustering applications. Using the designed
interface, we made an experiment for words clustering, using a Romanian
corpus.

Keywords: Clustering, Programming, Interface.

1. Introduction

The purpose of this paper is to present a standard interface for programming
clustering tasks. The interface is meant to facilitate the development of software
for clustering in different domains. In particular, the interface should facilitate an
approach in which objects to be clustered and attributes describing the objects
can be designed and implemented separately and then interconnected relatively
easily in a standard, uniform fashion.

The aim of the proposed approach is to abstract the clustering issue, assuring
a general approach, independent of the concrete representations of the entities
involved in the clustering process.

In various domains clearly appears the necessity of clustering different kind of
objects, with respect to different kind of attributes.

For example, in the field of Natural Language Processing we often need to group
words by the similarity of their meanings, using a given corpus of words. In this

Received by the editors: March 20, 2005.
2000 Mathematics Subject Classification. 68N19, 62H30.
1998 CR Categories and Descriptors. I.5.3[Computing Methodologies]: Pattern

Recognition – Clustering; D.1.5[Software]: Programming Techniques – Object-Oriented Pro-
gramming;

69

70 GABRIELA ŞERBAN

example, the objects to be clustered are words and the attributes characterizing
the objects are also words (from the corpus) [2].

Another example in which clustering is needed is HealthCare. HealthCare rises
the problem of grouping patients in classes (clusters) with respect to the values of
a number of symptoms for a given disease. In this kind of problems, the objects
to be clustered are patients, and the attributes are symptoms [9].

There are many other domains in which clustering is needed, but for different
kinds of objects and attributes.

That is why, in this paper we propose an unitary approach for all the clustering
applications, independent of the type of objects to be clustered and the type of
attributes characterizing the clustering process.

2. Clustering

As it is well-known, clustering is a partition of data into groups of similar
objects.

Let us consider the following issue: given n objects O1, O2, ..., On, and m at-
tributes A1, A2, ...Am (a set of relevant characteristics of the analyzed objects) ,we
intend to group the objects in a given number k of clusters, so that the objects
within a cluster are more similar (related to the given attributes) to each other
than objects in different clusters.

For computing the similarities between objects we use the vector-space model,
which means that the vector ~Oi = (Oi

1, Oi
2, ..., Oi

m) is associated with an object
Oi as following: Oi

j is a real number that gives a classification of the object Oi

from the point of view of attribute Aj .
For designing our interface, the computation method of Oi

j is unimportant.
Similarity and dissimilarity between objects are calculated using metric or semi-

metric functions, applied to the attribute values characterizing the objects.
There are several methods for computing the similarity between two objects

represented by their associated vectors (as defined above).

(1) The similarity measure between two objects Oa and Ob is defined as the
normalised cosine between the vectors ~Oa and ~Ob [7]:

sim(~Oa, ~Ob) = cos(~Oa, ~Ob) =

∑m
j=1 Oj

a ×Oj
b√∑m

j=1 Oj2

a ×
√∑m

j=1 Oj2

b

.

(2) the similarity measure between two objects Oa and Ob is defined as

sim(~Oa, ~Ob) =
1

∑m
j=1 (Oj

a −Oj
b)

2 .

A PROGRAMMING INTERFACE FOR NON-HIERACHICAL CLUSTERING 71

(3) the similarity measure between two objects Oa and Ob is defined as

sim(~Oa, ~Ob) =
1∑m

j=1 |Oj
a −Oj

b |
.

The distance between two objects Oa and Ob is defined as

d(~Oa, ~Ob) =
1

sim(~Oa, ~Ob)
.

A well-known class of clustering methods is the one of the partitioning methods,
with representatives such as the k-means algorithm. Essentially, given a set of n
objects and a number k, k ≤ n, such a method divides the object set into k distinct
and non-empty partitions. The partitioning process is iterative and heuristic; it
stops when a “good” partitioning is achieved. A partitioning is “good”, as we said,
when the intra-cluster similarities are high and inter-cluster similarities are low.

We give next the non-hierarchical clustering algorithm (k-means algorithm) [8].

Algorithm k-means is
Input: - The set X = { ~O1, ~O2, · · · , ~On} of n vector objects to be

clusterised,
- the distance measure d : Rm ×Rm → R, between objects in a
multi-dimensional space,
- k, the number of desired clusters,
- a function for computing the mean of a cluster C, µ : C →
R,
- the coefficient σ (the threshold).

Output: - the set of clusters C = {C1, C2, · · · , Ck}.
Begin

Select k initial centroids {~f1, ~f2, · · · , ~fk}
While the diameter of a cluster ≥ σ do

For all clusters Cj ∈ C do

Cj = { ~Oi | ∀~fl d(~Oi, ~fj) ≤ d(~Oi, ~fl)}
EndFor
For all clusters Cj ∈ C do

~fj = ~µ(Cj)
EndFor

EndWhile
End.

As distance measure we considered:

72 GABRIELA ŞERBAN

d(~Oa, ~Ob) =
1

sim(~Oa, ~Ob)
and as centroid the mean of the cluster:

~µ(Cj) =
1

| Cj |
∑

~O∈Cj

~)

We define the diameter of a cluster as the distance between the least similar
elements in a cluster.

We also mention that the algorithm stops when the diameter of each cluster is
less then a fixed threshold.

3. The programming interface

In this section we propose a standard interface that allows a simple develop-
ment of clustering applications, providing a uniform development for all kind of
applications.

The programming interface provides a hierarchy of classes and interfaces that
can be used in all clustering applications. The clustering mechanism will be the
same for all types of objects and attributes.

The interface is realized in JDK 1.5, and is meant to facilitate software devel-
opment for non-hierarchical clustering.

There are three basic entities (objects): objects to be clustered, attributes (that
characterize the objects) and clustering.

For designing the interface, we made an abstraction of the clustering mecha-
nism, in order to be used for any kind of data (objects and attributes). Much
more, the objects to be clustered are completely separated from the attributes
that characterize them (an object has to know nothing about an attribute). Thus,
we can easily change the attributes characterizing the objects, without affecting
the clustering process.

The clustering object is the main object of the interface that manages the
clusterization of the given objects related to the given attributes. The clustering
object provides the behavior specific to the clustering process.

A main characteristic is that the clustering object is completely separated from
the objects to be clustered and the attributes characterizing the objects (the clus-
tering object knows only the behavior provided by the methods from the interface
of these entities).

The interface provides an object as a manager for the list of objects to be
clustered that manages the creation of the list of objects, attributes and centroids
from an external device (file, database).

For using the interface, the user has to define the specialized object classes
CConcreteObject (the concrete object to be clustered), CConcreteAttribute

A PROGRAMMING INTERFACE FOR NON-HIERACHICAL CLUSTERING 73

(the concrete attribute) and CConcreteManager (the concrete manager for the
list of objects and attributes), by creating instances for each. The list of objects,
attributes and centroids given by the manager are then passed to a clustering ob-
ject (CClustering), that will initialize the clustering process and will manage the
results.

In the following we present the skeleton of a clustering application.

(1) First, the user defines the class corresponding to the concrete object to
be clustered.
public class CConcreteObject extends CObjectToBeClusterized
{...}

(2) Second, the user defines the class corresponding to the concrete attribute
that characterizes the objects.
public class CConcreteAttribute implements IAttribute
{...}

(3) The user defines the class corresponding to the concrete manager of ob-
jects to be clustered and attributes.
public class CConcreteManager implements IClusteringManager
{
public CListOfObjectsToBeClustered createListOfObjects(){...}
public CListOfAttributes createListOfAttributes(){...}
public CCluster createCentroids(){...}
{...} }

The application class which initializes the clusterization with the data provided
by the concrete manager object is always the same (remains unchanged for all
non-hierarchical clustering issues), and is described below.

class Application {
private Application(){

CConcreteManager cm=new CConcreteManager();
//the manager provides the list of objects to be clusterized

CListOfOjectsToBeClustered l=cm.createListOfObjects();

//the manager provides the list of attributes corresponding to the objects
CListOfAttributes y=cm.createListOfAttributes();

//the manager provides the initial centroids of the clusters
CCluster f=cm.createCentroids();

//the manager initializes the clustering process
CClustering l=new CClustering(l, y, f); }

74 GABRIELA ŞERBAN

public static void main(String args[]){
Application apl=new Application();

}}
Figure 1 shows a simplified UML diagram of the interface, illustrating the hi-

erarchy of classes. It is important to mention that all the classes provided by the
interface, except the concrete classes, remain unchanged for all kinds of clustering
applications.

4. The Design of the Interface

The classes used for realizing the interface are the following:
• IList INTERFACE

Defines the structure of a list of objects, having operations for man-
aging the list: adding an element on a given position, removing an ele-
ment from a given position, returning the number of elements from the
list, returning an element from a given position.

• IClusteringManager INTERFACE
Defines the structure of a manager for the clustering process. The

manager provides methods for obtaining the elements that are needed in
the clustering process: creating the list of objects, the list of attributes
and the initial centroids.

• CLine
Defines the structure for the vector ~O corresponding for an object

O (as we had defined above). An element of this vector is a real num-
ber, representing a characteristic measure for the object related to an
attribute (in this class, the type of an attribute is unimportant). The
main methods of this class are for: adding, updating, removing elements,
for calculating the similarity between two lines.

• CCluster
In our design a cluster is represented as a list of CLine(a line iden-

tifies in fact an object). For a cluster, the type of the object is unim-
portant. The main methods of this class are for: adding, updating,
removing elements, for calculating the centroid of a cluster, for testing
the equality of two clusters.

OBJECTS

An object is the entity to be clustered.
• CObjectToBeClustered ABSTRACT CLASS

Is the basic class for all the objects. The specific objects will be
instances of subclasses derived from CObjectToBeClustered. An ob-
ject is identified by its vector representation. The methods of this class

A PROGRAMMING INTERFACE FOR NON-HIERACHICAL CLUSTERING 75

Figure 1. The diagram of the programming interface

76 GABRIELA ŞERBAN

are for: returning a String with the representation of an object, return-
ing the value of an object, comparing two objects, returning the vector
corresponding to an object.

• CListOfObjects ABSTRACT CLASS
This class represents the list of objects to be clustered. The main

methods are for managing the list.
• CListOfObjectsToBeClustered ABSTRACT CLASS

This class maintains a list of objects CListOfObjects and the list
of vector representations corresponding to each object from the list. The
main methods are for managing the components.

ATTRIBUTES

• IAttribute INTERFACE
Defines the structure of an attribute characterizing an object to be

clustered. The methods of this class are for: returning a String with
the representation of an attribute, returning the value of an attribute,
comparing two attributes.

CLUSTERING

• CClustering
Is the basic object of the interface, that manages the clustering

process of the objects (related to the attributes). Defines the heart of
the interface, the uniform usage that all objects and attributes are meant
to conform to.

An instance of the clustering class is associated with an instance of
a list of objects and a list of attributes at the creation moment. This is
made in the constructor of the class CClustering. The main method
of this class is the method that manages the clusterization process (us-
ing the non-hierarchical clustering algorithm) and returns the clusters
obtained.

public class CClustering
{

private CListOfAttributes y; //reference to the list of attributes
private CListOfObjectsToBeClusterized l; //reference to the list of

objects to be clustered
private CCluster f; //reference to the initial centroids
...

}

A PROGRAMMING INTERFACE FOR NON-HIERACHICAL CLUSTERING 77

5. Experiments

In order to test the above defined interface, we considered a NLP experiment
for the Romanian language. The aim was to clusterize a set of words (to group
the words after the similarity of their meanings).

In our experiment, the attributes for the words to be clusterised were also words.
Using a corpus for Romanian language, the vector words are computed based on
the idea described in [2].

For testing the generality of our interface, we have also developed a clustering
application for HealthCare. We mention that all data were taken from the website
at [10].

The objects to be clusterized in this experiment were patients: each patient is
identified by 9 attributes [9]. The attributes have been used to represent instances.
Each instance has one of two possible classes: benign or malignant.

For each experiment, we have defined the classes that provide the current clus-
tering focus, CConcreteManager, CConcreteAttribute and CConcreteObject
and the applications for clustering were easily developed.

As a conclusion of our experiments, we have to mention, from a programmer
point of view, the advantages of using the above proposed interface:

• is very simple to use;
• the effort for developing a clustering application is reduced – we need to

define only three classes, the rest is provided by the interface;
• the user of the interface has to know nothing about the method for

clustering the objects, because is provided by the interface;
• we can dynamically change the type of objects to be clustered or the

type of the attributes that characterize the objects, and the interface
remains unchanged.

6. Conclusions and Further Work

As a conclusion, we have developed a small framework that will help program-
mers to build, dynamically, their own clustering applications without dealing with
the clustering mechanism (that remains unchanged and is provided by the inter-
face). For a concrete application, the programmer has only to create three classes
(derived from the classes defined by the interface): a class corresponding to the
object to be clustered, a class corresponding to the attribute characterizing an
object and, finally, a class corresponding to the entity that manages the objects
and attributes.

After defining the concrete classes, the clustering will be made by creating an
instance of the class CClustering provided by the interface. So, the programmer’s
effort for developing an application is small.

We mention that using the proposed interface we can simply develop clustering
applications for different kind of data (objects). The objects can be words (in

78 GABRIELA ŞERBAN

NLP), databases, even patients (in HealthCare), or any other objects for which
clustering techniques can be applied.

Further works can be done in the following directions:
• how can the interface be generalized in order to be used both for hier-

archical [2] and non-hierarchical clustering;
• how can the interface be generalized for adaptive clustering (there are

new Objects to be clustered or/and new Attributes that characterize the
already clustered Objects).

References

[1] Jain, A., Dubes, R, “Algorithms for Clustering Data”, Prentice Hall, Englewood Cliffs,
New Jersey, 1998.

[2] Tatar, D., Serban, G.: “Words Clustering in Question Answering Systems”, Studia Uni-
versitatis ”Babes-Bolyai”, Informatica, XLVIII(1), 2003, pp.23–32.

[3] I. Dagan, L. Lee, F. C. N. Pereira: “Similarity-based models of Word Coocurences Prob-
abilities”, Machine Learning Journal 34(1–3), 1999, pp.1–26.

[4] C. Orasan, D. Tatar, G. Serban, D. Avram, A. Onet: “How to build a QA system in
your back-garden: application to Romanian”, EACL ’03, Budapest, April 2003, 12-14,
pp.139–142.

[5] P. Resnik: “Semantic Similarity in a Taxonomy: An information-Based Measure and its
Application to Problems of Ambiguity in Natural language”, Journal of AI Research,
1998, Center for the Study of Language and Information (CSLI), pp.1–28 .

[6] G. Serban, D. Tatar, “Word Sense Disambiguation for Untagged Corpus: Application
to Romanian Language”, Proceedings of CICLing 2003 (Intelligent Text Processing and
Computational Linguistics), Mexico City, Mexic, Lecture Notes in Computer Science N
2588, Springer-Verlag, 2003, pp.270-275.

[7] D. Jurafsky, J. Martin: “Speech and language processing”, Prentice Hall, 2000.
[8] C. Manning, H. Schutze: “Foundation of statistical natural language processing”, MIT,

1999.
[9] Wolberg, W., Mangasarian, O.L.: “Multisurface method of pattern separation for medical

diagnosis applied to breast cytology”, Proceedings of the National Academy of Sciences,
U.S.A., Volume 87, December 1990, pp 9193–9196.

[10] http://www.cormactech.com/neunet, “Discover the Patterns in Your Data”, CorMac
Technologies Inc, Canada.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,
Romania

E-mail address: gabis@cs.ubbcluj.ro

