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Abstract. Recently a new evolutionary optimization metaheuristics, the

Genetic Chromodynamics (GC) has been proposed. Based on this meta-

heuristics a dynamic clustering algorithm (GCDC) is proposed. This method

is used for designing RBF neural network topologies. Complexity of these net-

works can be reduced by clustering the training data. The GCDC technique

is able to solve this problem. In Part I the GCDC technique is presented. It is

described, how this method could be used for designing optimal RBF neural

network topologies. In Part II some numerical experiments are presented.

The proposed algorithm is compared with a static clustering technique, the

generalized k-means algorithm.
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1. Introduction

Recently a new evolutionary search and optimization metaheuristics - called Ge-
netic Chromodynamics (GC) (see [4, 14]) - has been proposed. Based on this the-
ory a clustering method is proposed. This GC-based dynamic clustering technique
- called GCDC - is described in [9]. The proposed algorithm can be successfully
used for designing optimal RBF neural network topologies.

In this Part some numerical experiments and obtained results are presented.
GCDC is used for clustering two-dimensional input data. The use of GCDC for
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designing optimal RBF neural network topologies is investigated. The method is
compared with a static clustering technique, the generalized k-means algorithm
[17].

In the next section the GCDC method is tested on two-dimensional input data.
The behavior of the fitness function is investigated. Section 3 presents how this
method can be used for designing RBF neural networks. GCDC is used for clus-
tering training data. The topology of the RBF network is designed based on the
obtained results. In the experiment presented in Section 4 the GCDC method is
compared with the generalized k-means clustering algorithm .

2. Experiment 1

From the two-dimensional input space 19 data points ((x, y) pairs, where x ∈
{100, ..., 300} and y ∈ {100, ..., 300}) organized in 5 clusters are considered.

GCDC is used for clustering this data set. The parameters of the method are:
- initial population size: 38;
- parameters for the fitness function: α = 2, C = 140;
- mutation step size: σ = 10;
- merging radius: ε = 25.
After 45 iterations the correct number of clusters is determined by the GCDC

method. The algorithm detects existing clusters and corresponding centers. The
obtained results are presented in Figure 1.

Figure 1. Convergence of the GCDC algorithm: two-
dimensional input data, 19 data points organized in 5 clusters
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More tests with different parameters for the fitness function are performed. The
behavior of the fitness function is presented in Figure 2, Figure 3, Figure 4 and
Figure 5.
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Figure 2. Fitness landscape for α = 1, C = 35

3. Experiment 2

RBF neural network is used for approximating the function:

f : [0, 9.5] → R, f(x) = 2 · sin
(
ln(x) · ecos( x

2 )
)

.

3.1. Experimental Conditions. From the interval [0,9.5] 200 points are consid-
ered as training samples. GCDC is used for clustering training data.

The obtained centers are used as center parameters for the RBF network. The
number of processor units in the hidden layer of the network is equal with the
number of centers determined by the GCDC method.

Parameters for GCDC:
- initial population size: 400;
- parameters for the fitness function: α = 1, C = 0.00001;
- mutation step size: σ = 0.0001;
- merging radius: ε = 0.05.
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Figure 3. Fitness landscape for α = 2, C = 35
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Figure 4. Fitness landscape for α = 2, C = 90

Gaussian activation functions are used. The parameters for the learning algo-
rithm are:
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Figure 5. Fitness landscape for α = 2, C = 140

- learning rate: 0.1;
- maximum number of learning epochs: 10000.
The generalization error is calculated using M = 400 inputs (that do not belong

to the training set) from the interval [0,9.5]. The following formula is used:

Eg =
1
M

M∑

i=1

(zi − yi)
2
,

where zi is the expected output and yi is the network output.

3.2. RBF networks obtained by using GCDC. RBF network has been trained
using 10 data sets. Each training set consists of 200 points from the interval [0,9.5].
In each set the points are organized in 50 well-separated clusters. For each set the
GCDC method is performed and RBF neural network topologies are created based
on the returned results.

In 5 cases the number of centers determined by GCDC is 50. In other 5 cases
there is a little difference (maximum +4). For some classes more centers are
considered. These differences have only minor effects on the network topologies.
There is no situation where the number of clusters determined by GCDC is less
than 50 (the optimal number of clusters).
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After training the obtained RBF networks, the mean generalization error is
0.539953496. Satisfactory approximation results are obtained (Figure 6).

Figure 6. 200 training samples organized in 50 clusters, centers
determined by the GCDC technique, output of the RBF network
after 10000 training epochs.

3.3. RBF networks obtained by using randomly generated centers. A
training set of 200 points organized in 20 clusters is considered. 20 centers are
randomly selected from this set. The RBF network is designed using these centers.
The procedure is repeated 10 times. After training the obtained RBF networks
the mean generalization error is 0.634810589.

The GCDC technique is performed for clustering the same data set. The method
finds 20 clusters and corresponding centers. Based on the returned results a RBF
neural network is designed. After 10000 learning epochs the 0.591574517 gen-
eralization error is achieved. Better result is obtained using GCDC than using
randomly selected centers.
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4. Experiment 3

A RBF Neural Network is used for approximating the function:

f : [0, 1] → R, f(x) =
(

x− 1
3

)3

· 1
27

.

The GCDC technique is compared with the generalized k-means algorithm.

4.1. Experimental Conditions. A training set consisting of 100 data points
organized in 18 clusters is considered.

For k-means algorithm the number of centers is randomly generated in the range
10-25 (we assume that there are more than 10 and less than 25 clusters). 10 tests
with 10 different values for the number of centers are performed.

The parameters for the GCDC algorithm are:
-initial population size: 200;
-parameters for the fitness function: α = 1, C = 0.00001;
-mutation step size: σ = 0.00001;
-merging radius: ε = 0.02.
The learning rate for the training process is fixed to 0.1. The learning process

will stop if the 0.00005 global learning error is achieved.
The generalization error is calculated using M = 400 inputs from the interval

[0, 1].

4.2. Obtained Results and Conclusions. The results obtained using the k-
means algorithm are presented in Table 1. The mean generalization error is:
0.002228871.

GCDC detects 18 clusters and corresponding centers (Figure 7). Using these
18 centers for designing the RBF neural network the learning error of 0.00005 is
achieved in 10945 epoches. The generalization error is 3.442700794496429E-4.

A better result is obtained using GCDC than using k-means. The method is
able to determine the optimal number of the centers. Using the k-means method
much better result is obtained by using 18 or greater value for the number of
centers, than using 17 or a smaller value (18 was the real number of the centers).
The learning process is thus very sensitive to the number of clusters.
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Figure 7. 100 training samples organized in 18 clusters, centers
determined by the GCDC technique, output of the RBF network
after 10945 training epochs.

5. Conclusions

Based on the GC metaheuristics, GCDC is a new evolutionary technique for
dynamic clustering. Experimental results indicate that GCDC could be a powerful
instrument for data clustering.

The use of GCDC for designing optimal RBF neural network topologies is in-
vestigated. Better results are obtained than using standard methods.
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[10] Enăchescu C.; Caracterizarea Reţelelor Neuronale ca şi Metode de Aproximare- Interpolare,

Petru Maior University, Buletinul Stiintific, 7 (1994).
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