
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 1, 2005

CONTINUATIONS FOR REMOTE OBJECTS CONTROL

ENEIA TODORAN1, FLORIAN MIRCEA BOIAN2, CORNELIA MELENTI1,

AND NIKOLAOS PAPASPYROU3

Abstract. We have recently introduced the ”continuation semantics for con-

currency” (CSC) technique in an attempt to exploit the benefits of using con-

tinuations in concurrent systems development. CSC is a general technique

for denotational semantics which provides excellent flexibility in the compo-

sitional modeling of concurrent control concepts. In this paper, we present a

denotational semantics designed with CSC for a distributed languages incor-

porating two control concepts which have not been modeled denotationally

before: remote object (process) destruction, and cloning.

1. Introduction

The CSC technique was recently introduced by us [13, 14] in an attempt to
exploit the benefits of using continuations in concurrent languages development.
It is a general technique for denotational semantic design, which can be used to
model both sequential and parallel composition in interleaving semantics, as well as
various mechanisms for synchronous and asynchronous communication [13]. Intu-
itively, it is a semantic formalization of a process scheduler simulated on a sequen-
tial machine. In the CSC approach, a continuation is an application-dependent
configuration (structure) of computations, where by computation we mean a par-
tially evaluated denotation (meaning function). Every moment there is only one
active computation, which remains active only until it performs an elementary ac-
tion. Subsequently, another computation taken from the continuation is planned
for execution. In this way it is possible to obtain the desired interleaving behavior
for parallel composition.

A continuation is a representation of what remains to be computed after taking
an elementary step from the (currently) active computation. This corresponds
to the original definition of continuations1, but in the CSC approach continua-
tions are structured entities and each computation contained in a continuation
can be accessed and manipulated separately. Synchronization and communication
information can also be encoded in continuations. What one gets with CSC is a

Received by the editors: January 10, 2005.
1A continuation is a representation of the rest of the computation, according to [11].

21



22 TODORAN, BOIAN, MELENTI, AND PAPASPYROU

”pure” continuation based approach to communication and concurrency in which
all control concepts are modeled as operations manipulating continuations.

As shown in [15], by using the CSC technique, denotational semantics can be
used not only for formal specification and design, but also as a general method
for building compositional interpreters for concurrent programming languages. In
this approach, a denotational (compositional) mapping can use continuations for
concurrency to produce incrementally a single stream of observables, i.e. a single
execution trace, rather than an element of a power domain construction. By using
a random number generator an arbitrary execution trace is chosen, thus simulating
the non-deterministic behavior of a ”real” concurrent system. Following [15], we
will call such a compositional mapping a denotational prototype.

In this paper, we employ the CSC technique in designing a denotational seman-
tics and a corresponding denotational prototype for a simple distributed language
providing operations for remote object (process) control. In the sequel, an ob-
ject is a thread (sequence) of computations with a local state. Distributed states
are essential for defining the semantics of concurrent languages used in distrib-
uted computing. The language that we study in this paper provides a mechanism
for synchronous communication taken from CSP [4]. It incorporates a notion of
remote processes as named objects and allow object-to-object communication, as
well as remote object destruction and cloning.

The last two operations can be encountered at operating system level, in some
coordination languages [5], or in distributed object oriented and multi-agent sys-
tems such as Obliq and IBM Java Aglets [3, 7, 6]. The former operation kills
a parallel running object and is similar to the ” kill -9 ” system call in Unix.
The latter operation creates an identical copy of a (parallel) running object. In
this paper, we provide an accurate denotational semantic model for remote object
destruction and cloning. To the best of our knowledge, such operations for re-
mote object control have not been modeled denotationally until now, and all our
attempts solve the problem by using only classic compositional techniques have
failed.

Instead of using mathematical notation for the definition of the denotational
models, we use the (lazy) functional programming language Haskell [9]. In this
way, as in [14], we avoid unnecessary complexities accompanying the use of domain
theory or the theory of metric spaces, which could have been adopted alternatively.
At the same time, we allow our denotational models to be directly implementable,
in the form of interpreters for the language under study, and thus to be easily tested
and evaluated. The denotational semantics will only be tested on trivial (non-
recursive) example programs. However, the corresponding denotational prototype
will be tested on ”real-life” examples. For example, we present a simple concurrent
generator of prime numbers based on the sieve of Erathostenes.



CONTINUATIONS FOR REMOTE OBJECTS CONTROL 23

2. Syntax and informal explanation

We consider a simple distributed language called Lobj . The syntax of Lobj is
given below in BNF. The basic components are a set (v ∈)V 2 of data variables, a
set (n ∈)N of numerical expressions, a set (b ∈)B of boolean expressions, and a
set (y ∈)Y of procedure variables. The language also uses a class (w ∈)W of object
variables; while a data variable holds a data value (in our case an integer value)
an object variable holds an object reference. Lobj comprises a simple language of
expressions, supporting basic operators on numerical values and boolean values.
In the grammar that follows, z denotes an integer constant, and v denotes a
(numerical) variable.

n ::= z | v | n + n | n − n | n % n | ...

b ::= n == n | n < n | ...

Lobj provides assignment ( v := n ), a primitive for writing the value of a nu-
merical value (i.e. for producing an intermediate observable) at the standard out-
put file (write n )3, a null command ( skip ), recursion, a conditional command
( if b then x else x ), sequential composition ( x ; x ), guarded nondeterministic
choice ( ned [( γ → x )∗] ), together with constructs for object (process) creation
( new w is x ), destruction ( kill w ), and cloning ( clone w is w ). The syntax
of Lobj is formally defined as follows:

x ::= skip | v := n | write n | call y | letrec y be x in x

| if b then x else x | ned [( γ → x )∗] | x ; x

| new w is x | kill w | clone w is w

where
γ ::= w ! n | ? v

The guards γ of a non-deterministic choice are constructs for object-to-object
synchronous communication. In Lobj , an object is a thread (sequence) of compu-
tations acting on a local state. There is no shared memory area. Parallel objects
can only communicate by exchanging messages. The communication mechanism
is taken from CSP [4]. A communication can take place by the synchronous exe-
cution of two actions w !n and ? v , occurring in parallel objects. The primitive
w !n evaluates the expression n and sends the value to the object referred by
w. An object executing the ? v statement is willing to communicate with an
arbitrary partner object, as long as that partner explicitly mentions the name of
the object in which the ? v primitive occurs; upon synchronization, the primitive
? v assigns the received value to the variable v. The expression n is evaluated in

2In this paper, the notation (x, y, ...)X introduces the set X with typical variables x, y,...
3Expressions of boolean type can not be assigned or output; they can only be used as

conditions.



24 TODORAN, BOIAN, MELENTI, AND PAPASPYROU

the memory area of the sending object and the result is assigned to the variable v

in the memory area of the receiving object. In order to communicate, two parallel
objects synchronize (the first one that is ready to communicate waits for the other)
and then they exchange a single value.

The new w is x statement can be used to create a new object (with a new
private state) which evaluates x. A reference to the newly created object is assigned
to variable w. Therefore, this statement not only creates a new object but also
a new communication connection to this object, which can be used by a w !n
primitive. Moreover, the new reference can be used by the two constructs for
remote object control: kill w and clone w1 is w . The former destroys the
parallel running object to which variable w refers. The latter clones the parallel
running object referred by w and assigns the clone’s identifier to the object variable
w1.

In Haskell, we implement the syntax of Lobj as follows:

type V = String
type W = String
type Y = String
data N = Z Int | V V | Plus N N | Minus N N | Mod N N
data B = Eq N N | Lt N N
data C = Snd W N | Rcv V
data X = Skip | Assign V N | Write N | Call Y | LetRec Y X X

| If B X X | Ned [(C,X)] | Seq X X
| New W X | Kill W | Clone W W

3. Denotational semantics

Lobj is a language with distributed objects. Objects can be referred and con-
trolled by using object identifiers (or references). For simplicity, we represent
object references by integer numbers.

type O = Int

Each object in Lobj has a local state, which can be accessed or modified in an
imperative manner. A state is usually represented as a mapping from variables to
values. In Lobj a state has two components: one for data values and the other one
for object references. We implement states by the type S. The operations getv,
setv, getw and setw provide the basic functionality of a state.

type S = (W -> O,V -> Int)

getv :: V -> S -> Int
getv v (sw,sv) = sv v



CONTINUATIONS FOR REMOTE OBJECTS CONTROL 25

setv :: S -> V -> Int -> S
setv (sw,sv) v i = (sw,subs sv v i)

getw :: W -> S -> O
getw w (sw,sv) = sw w

setw :: S -> W -> O -> S
setw (sw,sv) w o’ = (subs sw w o’,sv)

The mapping subs is defined as follows:

subs :: (Eq a) => (a -> b) -> a -> b -> (a -> b)
subs f x y = \x’ -> (if (x==x’) then y else f x’)

We can already define simple valuations evN and evB, for numerical and boolean
expressions. In general, the meaning of a (boolean) expression depends on the
current state.

evN :: N -> S -> Int
evN (Z n) s = n
evN (V v) s = getv v s
evN (Plus n1 n2) s = (evN n1 s) + (evN n2 s)
evN (Minus n1 n2) s = (evN n1 s) - (evN n2 s)
evN (Mod n1 n2) s = (evN n1 s) ‘mod‘ (evN n2 s)

evB :: B -> S -> Bool
evB (Eq n1 n2) s = (evN n1 s) == (evN n2 s)
evB (Lt n1 n2) s = (evN n1 s) < (evN n2 s)

In Lobj it is possible for a program to block, if all parallel objects are waiting at
nondeterministic constructs that do not have matching communication primitives.
Such a deadlock is fundamentally different from non-termination (e.g. a procedure
that repeatedly calls itself) and we expect it to be detected by the denotational
semantics. We use the type Q to represent streams (lists) of observables. In the
definition given below, Epsilon denotes normal termination and Deadlock denotes
deadlock.

data Q = Epsilon | Deadlock | Q Int Q

We use the following Show instance to visualize the yields of our denotational
models.

instance Show Q where
show Epsilon = " "
show Deadlock = " deadlock "
show (Q n q) = " " ++ (show n) ++ (show q)



26 TODORAN, BOIAN, MELENTI, AND PAPASPYROU

The denotational semantics for Lobj maps each statement to a computation
(a partially evaluated denotation), which is an element of type D. We will use
continuation semantics for concurrency, therefore it is reasonable to assume that
a computation is a function that depends on the current continuation. In the
definition below, Cont is the semantic class of continuations. The semantics of a
program also depends on the current state.

type D = Cont -> S -> Final

Final is the final yield of the denotational mapping. In section 4, Final will
implement a domain for random execution traces [15]. In this section, Final
implements a classical power domain construction [10], and the denotational se-
mantics produces the collection of all possible traces for any given program; the
Haskell definition will be given later.

Following the CSC technique [13, 14], a continuation is a configuration of com-
putations that can be executed in parallel. The CSC technique is very general.
It does not impose any restriction on the structure of continuations. For our lan-
guage with object creation it is convenient to define continuations to be multisets
of objects. Objects are elements of type Obj. An object is a triple, consisting of an
object identifier, a thread (sequence) of computations, and a local state. We use
two basic notions to model the flow control: the stack to model sequential com-
position, and the multiset to model parallel composition. A stack models a single
thread (or sequence) of computations. We implement both stacks and multisets
as Haskell’s lists. The type PC implements a multiset. The type SC implements
a stack. An element of a SC stack is either a computation or a non-deterministic
choice consisting of a list of guarded alternatives, where each alternative consists
of a (synchronous) communication attempt and a computation. Haskell definitions
are as follows:

type Cont = PC
type PC = [Obj]
type Obj = (O,SC,S)
type SC = [Comp]
data Comp = D D | S [(SemC,D)]

We use some auxiliary mappings on objects.

idOf :: Obj -> O
idOf (o,sc,s) = o

threadOf :: Obj -> SC
threadOf (o,sc,s) = sc

stateOf :: Obj -> S



CONTINUATIONS FOR REMOTE OBJECTS CONTROL 27

stateOf (o,sc,s) = s

updThread :: Obj -> SC -> Obj
updThread (o,sc,s) sc’ = (o,sc’,s)

updState :: Obj -> S -> Obj
updState (o,sc,s) s’ = (o,sc,s’)

The type SemC implements communication attempts. The function semC maps the
(syntactic) communication primitives of Lobj to corresponding (semantic) commu-
nication attempts.

data SemC = SemSnd W (S -> Int) | SemRcv V

semC :: C -> SemC
semC (Snd w e) = SemSnd w (evN e)
semC (Rcv v) = SemRcv v

The function k implements continuation completion. It maps a continuation
to the program answer that would result if the continuation alone was left to
execute. It first normalizes the continuation by using the auxiliary mapping re.
The execution terminates if the (normalized) continuation is empty. Otherwise, k
calls the function kc which implements a scheduler, by using the auxiliary functions
schedc, comp, scheds, and send.

k :: Cont -> Final
k c = case (re c) of {

[] -> epsilon;
c -> kc c;

}

kc :: Cont -> Final
kc c = case ((schedc c) ++ (scheds c [])) of {

[] -> deadlock;
scd -> bigned (map exe scd);

}

schedc :: PC -> [Sched]
schedc pc =

[ (Schedc d (obj:pc’) (stateOf obj)) | (D d,obj:pc’) <-
comp pc [] ]

comp :: PC -> PC -> [(Comp,PC)]



28 TODORAN, BOIAN, MELENTI, AND PAPASPYROU

comp [] pc’ = []
comp (obj:pc) pc’ =

(let p:sc = threadOf obj in
[(p,(updThread obj sc):(pc ++ pc’))])

++ (comp pc (obj:pc’))

scheds :: PC -> PC -> [Sched]
scheds [] pc’ = []
scheds (obj:pc) pc’ =

(send [obj] (pc ++ pc’)) ++ (scheds pc (obj:pc’))

send :: PC -> PC -> [Sched]
send pc1 pc2 =

[ (Scheds ((addc (D d1) (obj1:pc1’)) ++
(addc (D d2) (updState obj2 (setv (stateOf obj2)

v (pe (stateOf obj1))):pc2’)))) |
(S snd,obj1:pc1’) <- comp pc1 [],
(S rcv,obj2:pc2’) <- comp pc2 [],
(SemSnd w pe,d1) <- snd, (SemRcv v,d2) <- rcv,
(getw w (stateOf obj1)) == idOf obj2

]

Continuations are multisets of objects. The semantic operators are designed in
such a way as to maintain the following invariant of the continuations: the thread
of each object in a continuation is always non-empty, with the possible exception
of the leftmost one which conceptually contains at its head the active computation.
The normalization function re removes the leftmost object in a continuation in
case its thread has remained empty after taking an elementary step from the active
computation.

re :: Cont -> Cont
re ((o,[],s):pc) = pc
re pc = pc

Both ordinary computations and pairs of communicating processes are handled by
the scheduler mapping kc. The function schedc handles ordinary computations.
The function scheds handles pairs of communicating objects (processes). The
scheduler computes all possible schedules for a given continuation. Deadlock is
detected when there are no schedules. A schedule is an element of the type Sched.

data Sched = Schedc D Cont S | Scheds Cont



CONTINUATIONS FOR REMOTE OBJECTS CONTROL 29

Schedules of the form Schedc d c s are produced by the function schedc.
Schedules of the form Scheds c are produced by scheds. The mapping exe
executes a single schedule.

exe :: Sched -> Final
exe (Schedc d c s) = d c s
exe (Scheds c) = k c

The scheduler also uses the mapping bigned to compute the meaning correspond-
ing to all possible schedules. A possible definition of bigned for a classical power
domain semantics is given later in this section. An alternative definition of bigned,
suitable for computing a single arbitrary execution trace, is considered in section
4.

The denotational function for Lobj uses the following semantic operators for
modeling the flow of control: addc, new, kill and clone. The operator addc adds
a computation to the continuation for sequential composition. The operators new,
kill and clone are used for object creation, destruction, and cloning respectively.

addc :: Comp -> Cont -> Cont
addc p (obj:pc) = (updThread obj (p:threadOf obj)):pc

new :: Comp -> Cont -> W -> S -> Cont
new p (obj:pc) w s = let on = newo (obj:pc)

in (updState obj (setw s w on)):(on,[p],s0):pc

kill :: Cont -> W -> S -> Cont
kill pc w s =

aux pc (getw w s)
where aux :: PC -> O -> PC

aux [] ok = []
aux (obj:pc) ok =

if (idOf obj == ok) then pc else (obj:(aux pc ok))

clone :: Cont -> W -> W -> S -> Cont
clone (obj:pc) wn wo s =

let on = newo (obj:pc)
in aux (updState obj (setw s wn on):pc) (getw wo s) on

where aux :: PC -> O -> O -> PC
aux [] oo on = error "clone: invalid object name"
aux (obj:pc) oo on =

if (idOf obj == oo) then
case (threadOf obj) of {



30 TODORAN, BOIAN, MELENTI, AND PAPASPYROU

[] -> obj:pc;
_ -> obj:(on,threadOf obj,stateOf obj):pc;

}
else obj:aux pc oo on

The mapping newo takes as parameter a continuation and creates a new fresh
object identifier. It returns an identifier which is not already in use by some
object in the given continuation.

newo :: Cont -> O
newo c = (maximum [ idOf obj | obj <- c ]) + 1

For handling recursion, we use semantic environments and a fixed-point operator.
A semantic environment is a mapping from procedure variables to computations.

type Env = Y -> D

fix :: (a -> a) -> a
fix f = f (fix f)

We are finally prepared to present the denotational semantics for Lobj .

sem :: X -> Env -> D
sem Skip e c s = k c
sem (Assign v n) e (obj:pc) s =

k (updState obj (setv s v (evN n s)):pc)
sem (Write n) e c s = prefix (evN n s) (k c)
sem (Ned gx) e c s =

k (addc (S [(semC c,sem x e) | (c,x) <- gx ]) c)
sem (Seq x1 x2) e c s = sem x1 e (addc (D (sem x2 e)) c) s
sem (Call y) e c s = e y c s
sem (LetRec y x1 x2) e c s =

sem x2 (subs e y (fix (\d -> (sem x1 (subs e y d))))) c s
sem (If b x1 x2) e c s =

if (evB b s) then (sem x1 e c s) else (sem x2 e c s)
sem (New w x) e c s = k (new (D (sem x e)) c w s)
sem (Kill w) e c s = k (kill c w s)
sem (Clone wn wo) e c s = k (clone c wn wo s)

When the CSC technique is employed in semantic design one can use a linear-
time domain (see [1]) as final yield of a denotational model for synchronous com-
munication [13]. Intuitively, an element of type Final is a set of Q sequences of
observables. The constants epsilon and deadlock are of the type Final. The
former models normal termination and the latter models deadlock detection in the
Final domain. The bigned operator computes the union of a list of elements of



CONTINUATIONS FOR REMOTE OBJECTS CONTROL 31

type Final. To this end, it is convenient to make Q an instance of Eq. The prefix
operator implements the prefixing of an observable to a final program answer.

type Final = [Q]

instance Eq Q where
Epsilon == Epsilon = True
Deadlock == Deadlock = True
(Q n1 q1) == (Q n2 q2) = (n1 == n2) && (q1 == q2)
_ == _ = False

epsilon, deadlock :: Final
epsilon = [Epsilon]
deadlock = [Deadlock]

prefix :: Int -> Final -> Final
prefix n p = [ (Q n q) | q <- p ]

bigned :: [Final] -> Final
bigned [] = []
bigned (q:p) = q ‘union‘ (bigned p)

union :: (Eq a) => [a] -> [a] -> [a]
union [] ys = ys
union (x:xs) ys =

if (x ‘elem‘ ys) then (xs ‘union‘ ys) else x:(xs ‘union‘ ys)

In order to test our denotational semantics we define initial values for the se-
mantic environment, continuation, and state.

e0 :: Env; e0 y c s = epsilon;
c0 :: Cont; c0 = [(o0,[],s0)];
o0 :: O; o0 = 0;
s0 :: S; s0 = (\w -> o0,\v -> 0);

For experiments, we consider the following example programs in Lobj .

x1 = Seq (New "w1" (Write (Z 1))) (Seq (New "w2" (Write (Z 2)))
(Write (Z 3)))

x2 = Seq (New "w1" (Ned [(Rcv "v",Write (V "v"))]))
(Ned [(Snd "w1" (Z 1),Ned [(Rcv "v",Skip)]),

(Snd "w1" (Z 2),Write (Z 2))])
x3 = Seq (New "w1" (Ned [(Rcv "v",

Seq (Write (Z 1))



32 TODORAN, BOIAN, MELENTI, AND PAPASPYROU

(Seq (Write (Z 2))
(Ned [(Rcv "v",Skip)])))]))

(Ned [(Snd "w1" (Z 0),
Seq (Clone "w2" "w1")

(Seq (Clone "w3" "w1")
(Seq (Kill "w1")
(Seq (Kill "w2") (Kill "w3")))))])

One can perform the following tests4:

Main> sem x1 e0 c0 s0
[ 3 2 1 , 3 1 2 , 2 1 3 , 2 3 1 , 1 3 2 , 1 2 3 ]
Main> sem x2 e0 c0 s0
[ 1 deadlock , 2 2 ]
Main> sem x3 e0 c0 s0
[ , 1 2 2 1 2 , 1 2 2 1 , 1 2 1 2 2 , 1 1 2 2 2 , 1 1 2 1 , 1 1 2
1 2 , 1 1 2 1 2 2 , 1 1 2 2 1 2 , 1 1 2 2 1 , 1 1 1 , 1 1 1 2 , 1
1 1 2 2 , 1 1 1 2 2 2 , 1 1 , 1 1 2 2 , 1 1 2 , 1 2 1 1 2 2 , 1 2
1 1 , 1 2 1 1 2 , 1 2 1 2 1 , 1 2 1 2 1 2 , 1 2 1 2 , 1 2 1 , 1 ,
1 2 2 2 , 1 2 , 1 2 2 ]

4. Denotational prototype

In [15] we have introduced the notion of a denotational prototype. A denota-
tional prototype is a compositional mapping that produces a single execution trace
for a given concurrent program rather than the collection of all possible traces.
By using a random number generator, an arbitrary execution trace is chosen, thus
simulating the non-deterministic behavior of a ”real” concurrent system. A de-
notational prototype is a compositional interpreter for the concurrent language
under study, which can be used without difficulty to test non-trivial concurrent
algorithms.

It is very easy to modify the denotational semantics given in section 3 to get
a denotational prototype for Lobj . We change the definition of the type Final
to reflect the fact the the final yield of the denotational prototype is a sequence
of observables (a single execution trace) of type Q. The denotational prototype
simulates the selection of an arbitrary execution trace by using a random number
generator, which is an element of type RNG.

type Final = RNG -> Q

The new definitions for epsilon and deadlock are as follows:

4We accomplished the experiments by using the Hugs interpreter available from

http://www.haskell.org.



CONTINUATIONS FOR REMOTE OBJECTS CONTROL 33

epsilon, deadlock :: Final
epsilon = \rng -> Epsilon
deadlock = \rng -> Deadlock

Random numbers are natural numbers. A random number generator is a pair con-
sisting of a random number and a mapping that produces a new random number
from a given one. rng0 is a poor man’s random number generator that will be
used to test our denotational prototype for Lobj .

type R = Int

type RNG = (R,R -> R)

rng0 :: RNG
rng0 = (17489,\r -> ((25173*r+13849) ‘mod‘ 65536))

All that remains to be done is to adapt the definitions of bigned and prefix to
deal with single arbitrary execution traces. The new definitions are given below.

bigned :: [Final] -> Final
bigned fs = \(r,next) -> (nth fs (r ‘mod‘ (length fs))

(next r,next))

nth :: [a] -> Int -> a
nth (z:xs) 0 = z
nth (z:xs) n = nth xs (n-1)

prefix :: Int -> Final -> Final
prefix n f = \rng -> (Q n (f rng))

The function (test x m) defined below calls m times our semantic interpreter
to execute the program x. Each time, the random number generator is initialized
with a new (pseudo-)random value. As a consequence, different results (execu-
tion traces) are produced at consecutive executions of the same program, thus
simulating the non-deterministic behavior of a ”real” concurrent system.

test :: X -> Int -> IO ()
test x m = aux x m rng0

where aux x 0 rng = return ()
aux x m (r,next) =

do { putStr (show (sem x e0 c0 s0 (r,next))
++ "\n\n");

aux x (m-1) (next r,next);
}



34 TODORAN, BOIAN, MELENTI, AND PAPASPYROU

We test the denotational prototype for Lobj on ”real life” programs. The first one
is a concurrent generator of prime numbers based on the sieve of Erathostenes. It
creates a new object for each prime number. Therefore, in this case the perfor-
mance degrades continuously. The second example program demonstrates remote
object destruction and cloning. A counting object is created and left alone to do
its job for a little while. Then, two clones of this object are created and there are
three counters working in parallel. After some time, the three objects are killed
and the program terminates.

x4 = LetRec "drive"
(Ned [(Snd "c" (V "i"),Seq (Assign "i" (Plus (V "i") (Z 2)))

(Call "drive"))])
(LetRec "run"

(Seq (Seq (Ned [(Rcv "i",Skip)])
(If (Eq (Z 0) (Mod (V "i") (V "p")))

Skip
(Ned [(Snd "cout" (V "i"),Skip)])))

(Call "run"))
(LetRec "sieve"
(Seq (Ned [(Rcv "p",Skip)])
(Seq (Write (V "p"))
(Seq (New "cout" (Call "sieve")) (Call "run"))))
(Seq (Assign "i" (Z 3)) (Seq (New "c" (Call "sieve"))

(Call "drive"))))
x5 = (LetRec "y"

(Seq (Write (V "v"))
(Seq (Assign "v" (Plus (V "v") (Z 1))) (Call "y")))

(LetRec "sleep"
(If (Lt (Z 0) (V "v1"))

(Seq (Assign "v1" (Minus (V "v1") (Z 1))) (Call "sleep"))
Skip)

(Seq (New "w" (Seq (Assign "v" (Z 10)) (Call "y")))
(Seq (Seq (Seq (Assign "v1" (Z 3)) (Call "sleep"))

(Seq (Clone "w1" "w") (Clone "w2" "w")))
(Seq (Seq (Assign "v1" (Z 7)) (Call "sleep"))

(Seq (Kill "w") (Seq (Kill "w1")
(Kill "w2"))))))))

Now one can perform the following experiments:

Main> test x4 1
3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73{Interrupted!}



CONTINUATIONS FOR REMOTE OBJECTS CONTROL 35

Main> test x5 4
10 11 12 13 14 13 14 15 15 14 15 16 16 17 16 17 18 18 17 18 19 19

10 11 12 13 13 13 14 14 15 14 15 15 16 16 16 17 17 18 18 19

10 11 12 13 13 13 14 14 15 14 15 15 16 16 16 17

10 11 12 13 13 14 14 14 15 15 15 16 16 16 17 17 17 18 18 18 19 19

5. Conclusions and future research

The CSC technique provides a discipline for compositional development of con-
current programming languages based on the concept of a continuation. It provides
the ability to encapsulate the concurrent behavior in continuations. The seman-
tic model for remote object control given in this paper shows that, by using the
CSC technique parallel computations can be manipulated as data in a strict de-
notational framework. Classic compositional technique do not seem to provide an
adequate framework for handling such operations.

In the near future, fundamental research related to the CSC technique will be
conducted in two main directions. First, in order to provide an abstract framework
for handling context changes and locality in concurrent languages development,
we plan to study the possibility of using the CSC technique in the possible world
semantics, eventually by extending models given in [12, 2]. Second, in order to
improve the flexibility, elegance and modularity of the denotational semantic de-
scriptions, we also plan to study the possibility to define monads [8, 16] for the
CSC technique.

References

[1] J.W. de Bakker and E.P. de Vink. Control flow semantics. MIT Press, 1996.

[2] S. Brookes. The essence of parallel Algol. Information and Computation, vol. 179(1),

pages 118–149, 2002.

[3] L. Cardelli. A language with distributed scope. In Proc. of the 22nd Annual ACM Sym-

posium on Principles of Programming Languages, pages 286–297, 1995.

[4] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[5] A.A. Holzbacher. A software environment for concurrent coordinated programming. In

Proc. of 1st Int. Conf. on Coordination Languages and Models, pages 249–267, Springer,

1996.

[6] IBM Aglets website: http://www.trl.ibm.com/aglets.

[7] D. Lauge and M. Oshima. Programming and deploying Java mobile agents with Aglets.

Addison Wesley, 1998.

[8] E. Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-

90-113, University of Edinburgh, 1990.



36 TODORAN, BOIAN, MELENTI, AND PAPASPYROU

[9] S. Peyton Jones and J. Hughes (editors). Report on the programming lan-

guage Haskell 98: a non-strict purely functional language, 1999. Available from

http://www.haskell.org/.

[10] G.D. Plotkin. A powerdomain construction. SIAM Journal of Computing, vol. 5, pages

522–587, 1976.

[11] C. Stratchey and C.P. Wadsworth. Continuations: a mathematical semantics for handling

full jumps. Technical monograph PRG-11, Programming Research Group, Univ. Oxford,

1974.

[12] R.D. Tennent and J.K. Tobin. Continuations in possible world semantics. Theoretical

Computer Science, vol. 85(2), pages 283–303, 1991.

[13] E. Todoran. Metric semantics for synchronous and asynchronous communication: a

continuation-based approach. In Proc. of FCT’99 Workshop on Distributed Systems,

Electronic Notes in Theoretical Computer Science (ENTCS), vol. 28, pages 119–146,

Elsevier, 2000.

[14] E. Todoran and N. Papaspyrou. Continuations for parallel logic programming, In Proc. of

2nd International ACM-SIGPLAN Conference on Principles and practice of Declarative

Programming (PPDP’00), pages 257–267, ACM Press, 2000.

[15] E. Todoran and N. Papaspyrou. Denotational prototype semantics for a simple con-

current language with synchronous communication. Technical report CDS-SW-TR-1-04,

National Technical University of Athens, School of Electrical and Computer Engineering,

Software Engineering Laboratory, 2004.

[16] P. Wadler. Monads for functional programming. In Advanced Functional Programming,

Springer, LNCS 925, 1995.

1 Technical University of Cluj-Napoca, Faculty of Automation and Computer Sci-

ence, Department of Computer Science, Baritiu Str. 28, Cluj-Napoca, ROMANIA

E-mail address: {Eneia.Todoran,Cornelia.Melenti}@cs.utcluj.ro
2 ”Babes-Bolyai” University of Cluj-Napoca, Faculty of Mathematics and Computer

Science, Department of Computer Science. M. Kogalniceanu Str. 1, Cluj-Napoca,

ROMANIA

E-mail address: florin@cs.ubbcluj.ro

3 National Technical University of Athens, Department of Electrical and Com-

puter Engineering, Software Engineering Laboratory, Polytechnioupoli, 15780 Zo-

grafou, Athens, GREECE

E-mail address: nickie@softlab.ntua.gr


