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SPEAKER INDEPENDENT PHONEME CLASSIFICATION IN
CONTINUOUS SPEECH

MARGIT ANTAL

Abstract. This paper examines statistical models for phoneme classi�ca-
tion. We compare the performance of our phoneme classi�cation system
using Gaussian mixture (GMM) phoneme models with systems using hidden
Markov phoneme models (HMM). Measurements show that our model's per-
formance is comparable with HMM models in context independent phoneme
classi�cation.
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1. Introduction
In order to build a continuous speech recognition system it is necessary to

model sub-word units. It is impossible to model all the words even in a reduced
size vocabulary. Word models will be formed from the concatenation of sub-word
units. These units will be the phonemes. The phonemes are a set of base-forms
for representing the sounds in a word. Replacing one phoneme in a word with
another is usually enough to turn that word into a di�erent word (or no word).

There are two general methods used for evaluating phoneme recognition sys-
tems, classi�cation and recognition. In classi�cation the segmentation is given
and the goal is to �nd the most likely label for each segment of speech, given its
beginning and end time. In the more general problem of recognition, on the other
hand, both the labels and the segmentation are unknown.

This paper investigates the problem of phoneme classi�cation. All the mea-
surements were done on the DARPA TIMIT speech corpus which is a manually
segmented speech database. The state-of-the-art technology in speech recognition
is Hidden Markov Models [5]. Commercial speech recognition systems usually use
HMM models for phonemes with continuous densities. The common model is a
left-to-right HMM with three states (see Fig.1). The reason for using three states
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Figure 1. Three-state left-to-right phoneme model

is that the �rst part and last part of a phoneme are usually di�erent from the mid-
dle due to co-articulation. This means that every state is responsible to model one
third of a phoneme. Several authors [1] noticed that the transition probabilities
have a negligible impact on the recognition accuracy and are often ignored. That
is why in our system we used GMM for modeling phonemes. A GMM is a HMM
with a single state, so there are no state transition probabilities, only observation
emitting probabilities. Measurements show that our system's classi�cation accu-
racy is close to systems using HMM for context-independent phoneme models and
with Maximum-likelihood estimation of the parameters.

The structure of this paper is as follows. First we provide a short review of the
phoneme classi�cation problem and present the GMM modeling technique. Then
we describe the acoustic features which were used. The �nal part of the paper
discusses aspects of the experiments and the obtained results.

2. Phoneme Classification
2.1. Phoneme Modeling. Phoneme classi�cation in continuous speech is a spe-
cial pattern classi�cation problem. It is easier than the phoneme recognition,
because in classi�cation phoneme boundaries are given. There are several ap-
proaches to pattern classi�cation. Roughly we can divide these approaches into
generative and discriminative modeling.

The HMM-GMM approach belongs to the generative models. Recently these
models were extended and new discriminative training algorithms were proposed
[6]. In the HMM-GMM approach each phoneme in the speech signal is given as
a series of observation vectors O = o1, o2, . . . , oT , and each one has one model
for each phoneme c. These models return a class-conditional likelihood P (O|c).
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The models are composed of states, and for each state we model the probability
that a given observation belongs to this state. Time warping is handled by state
transition probabilities, that is the probability that a certain state follows the
given state. Supposing that the observations are independent (which is true only
if we perform feature extraction in a very special way), the �nal probability for a
sequence of observations can be computed using the forward algorithm [5].

HMM has several di�erent forms like the discrete observation HMM and the
continuous observation HMM. The discrete observation HMM is restricted to the
production of a �nite set of discrete observations. On the other hand in contin-
uous observation HMM the observations are continuous and vector-valued. The
usual way is to use a mixture of weighted Gaussian probability density function
characterizing the distribution of observations within each state. The probability
density function is given as

(1) p(oj) =
k∑

i=1

PiN (oj ,Mi, Σi)

where N ( . , Mi,Σi) denotes the multidimensional normal distribution with mean
Mi and covariance matrix Σi, k is the number of mixtures, and Pi are positive
weighting factors which sum to 1. The D-dimensional normal density function has
the form

(2) N (oj ,Mi,Σi) =
1√

(2π)Ddet(Σi)
e−

1
2 (oj−Mi)

T Σ−1
i (oj−Mi)

While HMMs are used for computing the class conditional likelihoods, discrimina-
tive models try to model the surfaces that separate the classes. For discriminative
models one can use Arti�cial Neural Networks [7] (ANN) or a relatively new tech-
nology called Support Vector Machines [8]. A special ANN which was successfully
applied for phoneme recognition is the Self-Organizing Map (SOM). This was in-
troduced by Kohonen [9] for Finnish phoneme models and good results were also
obtained for English vowels [10].

2.2. Gaussian Mixture Models. Our classi�cation system was built for gener-
ative models. Instead of three states HMM we used only one state HMM which is
a GMM. Our aim was to achieve the same recognition accuracy as for the classi-
cal three states HMM. We performed context independent classi�cation (context
dependent models perform better) on the DARPA TIMIT database and obtained
slightly better classi�cation accuracy than those using HMM on the same database.

Gaussian Mixture Models can be viewed as a special type of clustering. Clus-
tering is an unsupervised classi�cation and in the contributed papers appears as
normal decomposition. Decomposition of a distribution into a �nite number of
normal distributions has been studied extensively. The parameters of normal dis-
tributions can be estimated using the method of moments or maximum likelihood
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estimation. The maximum likelihood (ML) method is more reliable especially for
high-dimensional cases. Having high dimensional feature vectors as data, we chose
this one. Let us assume that p(X) consists of k normal distributions as

(3) p(X) =
k∑

i=1

Pi · pi(X)

where pi(X) is a normal distribution (N (X, Mi,Σi)) with the expected vector
Mi and covariance matrix Σi. Our problem simpli�es to estimation of Pi, Mi,
Σi (i = 1 . . . k) from the n available samples X1, X2, . . . , Xn, drawn from p(X).
Our goal is to maximize

∏n
j=1 p(Xj) with respect to Pi, Mi,and Σi under the

constraint
∑k

i=1 Pi = 1. This optimization problem must be solved iteratively.
One solution to this problem can be found by applying the maximum likelihood
estimation technique (ML). Taking the logarithm of

∏n
j=1 p(Xj), the criterion to

be maximized becomes
∑n

j=1 ln p(Xj). Using the Lagrange multiplier's method
the criterion to be maximized is

(4) J =
n∑

j=1

ln p(Xj)− µ

(
k∑

i=1

Pi − 1

)
,

where µ is a Lagrange multiplier. Computing the derivatives with respect to Pi,
Mi and Σi and making them zeros we obtain the following formulas.

(5) Pi =
1
n

n∑

j=1

qi(Xj)

(6) Mi =
1
Ni

n∑

j=1

qi(Xj)Xj

(7) Σi =
1
Ni

n∑

j=1

qi(Xj)(Xj −Mi)(Xj −Mi)T ,

where

(8) qi(X) =
Pi pi(X)∑k

j=1 Pj pj(X)

is the a posteriori probability of X belonging to class i and satis�es
∑k

i=1 qi(X) =
1. Ni is the number of samples belonging to class i.

The parameter estimation process can be described as follows.
Step 1. Choose an initial classi�cation, Ω(0), and calculate Pi, Mi and Σi (i =
1, . . . , k).
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Step 2. Having calculated P
(l)
i , M

(l)
i , and Σ(l)

i , compute P
(l+1)
i , M

(l+1)
i , and Σ(l+1)

i

by 5, 6 and 7 . The new q
(l+1)
i (X) can be calculated as

(9) q
(l+1)
i (Xj) =

P
(l)
i · p(l)

i (Xj)∑k
s=1 P

(l)
s p

(l)
s (Xj)

Step 3. When q
(l+1)
i (Xj) = q

(l)
i (Xj) for all i = 1, . . . k and j = 1, . . . n, then stop.

Otherwise, increase l by 1 and go to step (2)
In order to reduce the computation time we can force the covariance matrices

to be diagonal. This assumption is justi�ed since we can extract statistically
uncorrelated features from speech. A diagonal covariance matrix allows expressing
(2) as:

N(o(j),M (i),Σ(i)) =
1√

(2π)D
∏D

k=1(σ
(i)
k )2

e
− 1

2

∑D
k=1

(o
(j)
k
−M

(i)
k

)2

(σ
(i)
k

)2

where M (i) = (M (i)
1 , M

(i)
2 , . . . ,M

(i)
D ) , σ(i) = (σ(i)

1 , σ
(i)
2 , . . . , σ

(i)
D ) and o(j) =

(o(j)
1 , o

(j)
2 , . . . , o

(j)
D ).

3. Experimental results
3.1. The DARPA TIMIT speech corpus. We used the TIMIT corpus for all
experiments. This corpus was designed for training and testing continuous speech
recognition systems. The database contains 6300 sentences, 10 sentences uttered
by each of 630 speakers from 8 major dialect regions of the United States. The data
were recorded at a sample rate of 16 KHz and a resolution of 16 bits. This corpus
was manually segmented so the phonetic boundaries are given. The phoneme set is
divided into the following 6 categories: vowels, stops, a�ricates, fricatives, nasals,
semivowels (and glides). Other symbols are used for silence and closure intervals
of stop consonants and a�ricates. There are 61 symbols used for labeling phonetic
segments but most research papers present results on a reduced 39 symbol set.
Table 1 presents the reduced 39 TIMIT symbol set.

3.2. Features, training and testing. We used for feature extraction 16 ms
frame with 8 ms frame shift. We chose 16 ms for frame length because the
phonemes belonging to the Stop category are usually very short. For example
we obtained 17.93 ms average length for the b phoneme. This length was com-
puted considering 915 occurrences of the phoneme in the speech corpus. From
every frame we computed 12 mel frequency cepstrum coe�cients[2, 3] and the
energy of the frame. These coe�cients do not incorporate any information about
the way the signal changes over longer periods. However, it is well known that
such information is essential in identifying sounds. In order to incorporate such
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Table 1. TIMIT symbols

Category Group Category Group Category Group
Vowel ah, ax, axh Vowel ih, ix Fricative z
Vowel iy Semivowel el, l Fricative f
Vowel ih, ix Semivowel r Fricative th
Vowel eh Semivowel w Fricative v
Vowel ey Semivowel y Fricative dh
Vowel ae Semivowel hh, hv Stop b
Vowel aa, ao Nasal m, em Stop d
Vowel aw Nasal n, en, nx Stop g
Vowel ay Nasal ng, eng Stop p
Vowel oy A�ricate jh Stop t
Vowel ow A�ricate ch Stop k
Vowel uw, ux Fricative s Stop dx
Vowel axr, er Fricative sh, sz Closure epi,q,bcl, dcl,gcl,

kcl,pcl,tcl,pau,h#

information we computed the �rst and second order derivatives which resulted in
39 features for a frame [4].

The 6300 utterances from TIMIT corpus were split into 4620 training utterances
and 1680 testing ones. We performed three types of training. In the �rst type we
used only 200 occurrences of every phoneme from the training set, in the second
type we selected 400 occurrences and in the third one we used 1000 occurrences
per phoneme. From these data we trained our phoneme models. For testing we
used only the �rst 200 utterances from the standard 1680 set.

For every experiment we used the reduced 39-TIMIT phoneme set.

3.3. Baseline GMM system. In this experiment we �xed all parameters of the
system except the number of mixtures. We used only diagonal covariance matrices
in order to speed up the parameter estimations. Table 2 summarizes the overall
classi�cation accuracy obtained for di�erent number of mixtures and for di�erent
numbers of phoneme occurrences used in training the models.

The best result for every type of training is in bold type. From this table we can
conclude that for a �xed number of training data always exist an optimal model.
If we use 200 occurrences per phonemes, the optimal model is formed by 32 normal
densities. When we increased this number, there were not enough training data
for accurate estimation of model parameters.
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Table 2. Classi�cation accuracies vs. number of Gaussians

Nr. of Gaussians 200 occ./phone 400 occ./phone 1000 occ./phone
1 41.56% 42.41% 44.68%
2 45.27% 47.77% 47.73%
4 48.54% 50.37% 51.20%
8 49.27% 52.34% 52.49%
16 51.98% 55.99% 55.68%
32 53.55% 57.10% 58.54%
64 52.68% 57.77% 58.89%
128 57.28% 60.16%
256 60.43%

Table 3. HMM

Paper Frame size/shift Features Mixtures/state Accuracy
[6] 32ms/10ms MFCC-13+Delta 5 58.97%
[11] 25.6ms/unspec. CC-12+Delta 8 57.10%
[12] 20ms/10ms MFCC-18+Delta unspec. 63.00%

3.4. Baseline HMM systems. Comparing our results with results obtained by
other researchers is not an easy task, although the experiments are conducted on
the same speech corpus. This di�culty is due to the incomplete presentation of
the parameters of the experiments. In this section we try to summarize results
obtained by others in the task of phoneme classi�cation using HMM technology for
phoneme modeling. We present results obtained by context independent phoneme
models with measurements performed on TIMIT corpus. All the cited papers used
3 state hidden Markov phoneme models. Table 3 presents the results obtained
by other research papers on the same task. It must be noted that [12] used
full covariance matrices and the others (including our paper) diagonal covariance
matrices for normal densities modeling.

More results can be found on the phoneme recognition topic, especially reported
on the context dependent phoneme recognition task.

3.5. Frames selection. Several authors select only a few frames from the mid-
dle of each phoneme and use only these frames for training the models [9, 10].
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Table 4. Classi�cation accuracies vs. number of frames

Nr. of frames Classi�cation accuracy
3 53.07%
5 56.06%
7 56.70%
all 57.10%

Sometimes they use such a frame selection for simpli�cations, but it can be proved
experimentally that the middle part of phonemes contain the real phoneme speci�c
features. Our experiment was performed using as models 32 Gaussian mixtures
and 200 occurrences per phonemes in training. Instead of using all frames belong-
ing to the phoneme segment we used only a �xed number of frames and computed
the recognition accuracy for the overall system. We ran this experiment for the
following number of frames: 3, 5, 7 and all frames belonging to the phoneme.
Table 4 summarizes the results.

3.6. Intra-category classi�cation. The best classi�cation accuracy for 400 oc-
currences per phoneme in training was obtained for 64 Gaussian models. We
calculated the classi�cation accuracies for the six phoneme categories. Using these
models we computed the intra-category classi�cation accuracy. Obviously the
intra-category classi�cation is higher than the all phonemes classi�cation (see Ta-
ble 5) because classi�cation accuracy decreases with increasing the number of
classes. One way to deal with this problem is to divide the entire phoneme set
into phoneme categories by a category classi�er and then to recognize phonemes in
each category by a phoneme classi�er. These categories contain all phonemes from
Table 1 except silence, because this is the only category having only one phoneme
group.

We computed the confusion matrix for 64 Gaussian models with 1000 occur-
rences per phoneme in training. The best classi�ed phoneme was the vowel oy and
the worst uh. Both are vowels. The most common errors are between symbols
belonging to the same category (see Table 6).

4. Conclusions and Future Work
The main conclusions of this paper are as follows. For a �xed number of training

data always exist an optimal model. This was demonstrated experimentally. Our
measurements show that using GMM as phoneme models one can reach slightly
better classi�cation accuracy than using three-states hidden Markov models. Ex-
periments show that the middle part of the phoneme contains the most phoneme
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Table 5. Intra category and all phonemes classi�cation accuracies

Phoneme category All phonemes Intra category
Vowels 56.05% 60.70%
Nasals 48.63% 61.26%

Fricatives 68.80% 77.64%
Semivowels 59.91% 84.47%

Stops 51.19% 60.78%
A�ricates 57.35% 72.80%

Table 6. The ten most common errors

Hand Label Recognizer Label Percentage of all errors
n, en, nx ng, eng 2.7%
Closures dx 2.6%
ih, ixx ah,ax,ax-h 1.9%

b g 1.9%
ih, ix iy 1.6%
d g 1.6%

ih, ix ey 1.4%
r axr, er 1.3%

Closures dh 1.3%
Closures g 1.3%

speci�c information. The confusion matrix demonstrates the viability of cate-
gory classi�cation scheme, because the most common errors are between symbols
belonging to the same category.

In the future we would like to implement the category classi�cation scheme
and after that to transform our system into a phoneme recognition system. An-
other aim is to test our system using context dependent phoneme models and to
improve the parameter estimation using other methods than the ML (Maximum
Likelihood).
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