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PARALLEL MUTATION BASED GENETIC
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Abstract. Genetic Chromodynamics is a strategy for preventing prema-
ture convergence and detecting multiple optimal solutions. A new technique
of applying genetic operators is proposed. The Parallel Mutation Based Ge-
netic Chromodynamics (PMGC) improves the local search from the standard
approach and combines it with the global search, by using an appropriate
mutation strategy.
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1. Introduction
Genetic Chromodynamics is an evolutionary technique for multimodal opti-

mization. The main idea of Genetic Chromodynamics is to force the formation
and maintenance of stable sub-populations. This aim is achieved by using a local
interaction scheme ensuring sub-population stabilization in the early search stages.
One of the Genetic Chromodynamics principles is the stepping stone search mech-
anism, every solution being involved in a search process by means of recombination
or mutation operators.

A new technique of applying genetic operators is proposed. This method pre-
serves the bene�ts of local interaction scheme from the standard approach of Ge-
netic Chromodynamics and improves it by means of recombination followed by a
small rate mutation, and is also making the exploration of the solutions space by
means of a large step mutation. These two operators are simultaneously applied,
and the two obtained o�spring compete for survival only if they belong to the same
optimal region and after they compete with the parents. If they belong to regions
of di�erent optimal points, both of them will be kept in the next generation. The
enlargement of the population is not a problem, because of the merging operator
that is fusing similar individuals. This way the population size will be reduced.
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For the small rate mutation, the Gaussian strategy is applied. The Cauchy muta-
tion strategy is applied for the large step mutation. The experimental results show
an improvement of the existing technique, by applying the proposed method on
several benchmark multimodal functions. The proposed model is called Parallel
Mutation Based Genetic Chromodynamics (PMGC).

The paper is organized as follows: Section 2 presents an overview of the Stan-
dard Genetic Chromodynamics (SGC) approach. The new technique of applying
genetic operators is presented in Section 3. Section 4 describes the two mutation
strategies used in the new approach. Experimental results prove the e�ciency of
the proposed model in Section 5. There are also conclusions presented in Section
6.

2. Genetic Chromodynamics
Many evolutionary techniques for solving multimodal optimization problems

have been proposed. Genetic Chromodynamics is a non-niching strategy that
maintains population diversity and detects multiple optima. The main principles
of Genetic Chromodynamics are:

1. population size is variable;
2. sub-population structure is not prede�ned, but emergent;
3. each individual within the current population is considered to be a stepping-

stone for the search process;
4. a new operator for merging very close individuals is considered;
5. at convergence, the number of sub-populations represents the number of op-

timal solutions.
In the standard Genetic Chromodynamics approach, every solution is involved

either in recombination or mutation. The best between the dominant parent and
the o�spring created by recombination or mutation will be kept in the next genera-
tion. In this approach, the o�spring obtained by mutation will be unconditionally
accepted if it is better than its parent. Thus, this strategy can be useful in the
�rst generations of the search process, but in the later stages could cause some
optima extinction. To prevent this situation, the mutation will always create o�-
spring belonging to the interaction range, by choosing an appropriate value of the
standard deviation parameter [4].

3. Parallel Mutation for Genetic Chromodynamics
We may consider a new recombination � mutation scheme, depicted in Figure

1. This scheme may be viewed as a new composed search operator. Recombina-
tion followed by mutation can be considered as a unique search operator. It will
be called RM. We also consider another mutation operator, called M, which acts
independently. In the proposed model, the di�erence between the two mutation
operators is made. M1 has a small rate of mutation, and M2 has a higher step.
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Figure 1. PMGC model

The proposed search model applies the two operators simultaneously and is called
Parallel Mutation Based Genetic Chromodynamics (PMGC). Both genetic oper-
ators will create o�spring that will compete for survival �rst with their parents.
After this, the best of them will survive if the two obtained o�spring belong to the
region of the same local optimum. If they belong to regions of di�erent local op-
tima, both of them will survive. This approach will not a�ect the local interaction
scheme and will improve the exploration of the solutions space.

The role of the very small rate mutation (operator M1) is to avoid the inter-
ference between recombination and high mutation. If the o�spring obtained after
recombination is a good solution for the problem, we do not want to loose this
descendent by applying a high mutation rate [1]. The proposed strategy is the
Gaussian one, which ensures a small mutation rate.

Larger mutation step (operator M2) ensures the exploration of the solutions'
space. Also, when recombination cannot be made anymore, this mutation will
attend faster the optimal points. Using a Cauchy mutation strategy ensures the
larger step (see Section 4).

The reason why both descendents survive if they belong to di�erent regions of
optimal points is to avoid the extinction of useful potential optima. This situation
can interfere if the o�spring obtained by M has a higher �tness that the �tness
obtained by RM and it belongs to a region corresponding to a di�erent optimum
point. This way, a useful optimum point represented by the RM o�spring is lost.

In order to keep all useful solutions, distance between the o�spring is taken into
account. If the two possible solutions belong to di�erent regions (the second does
not belong to the interaction range of the �rst one) then both of them will be kept.
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4. Gaussian and Cauchy mutation strategies
Gaussian mutation strategy accomplishes the request of a small mutation rate

that follows the recombination. Cauchy strategy is used for the mutation that acts
simultaneously to it. The two mutation strategies are described in the following
paragraphs:

4.1. Gauss mutation strategy. Let us consider the following chromosome:

{x1, x2, . . . , xm}
If the element xk is selected for mutation, k = 1, . . . ,m, the result will be:

{x1, . . . , x
′
k, . . . , xm}

Gaussian mutation has two parameters: a mean value and a standard deviation.
In this mutation approach, the following relation transforms the element xk into
x′k:

(1) x′k = xk + ηNk(0, 1),

where the correction step η is the standard deviation for Gaussian mutations.
Nk(0, 1) denotes a normally distributed one-dimensional random number with
mean 0 and standard deviation 1. This random number is generated anew for
each value of k, k = 1, . . . , m [3].

4.2. Cauchy mutation strategy. Cauchy mutation can perform longer jumps
with high probability. The search step size is much larger than the search step
of the Gaussian mutation. The shape of Cauchy density function is similar to
that of the Gaussian density function but approaches the axis so slowly that an
expectation does not exist [7]. As a result, the variance of the Cauchy distribution
is in�nite. Figure 2 shows the di�erence between Cauchy and Gaussian density
functions.
The one-dimensional Cauchy density function centered at the origin is de�ned by:

ft(x) = t/π(t2 + x2),−∞ < x < ∞,

where t > 0 is a scale parameter. The corresponding Cauchy distribution function
is given by:

Ft(x) = 1/2 + arctan(x/t)/π.

In this mutatin strategy, the following relation transforms the element xk into x′k:

(2) x′k = xk + ηδk,
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Figure 2. Comparison between Cauchy and Gaussian density functions

where δk is a Cauchy random variable. The method used to generate Cauchy ran-
dom numbers is based on the inverse transformation, i.e. the inverse distribution
function, and is de�ned by:

δk = ttan[π(U(0, 1)− 1/2)],

where U(0,1) denotes the unit rectangular variate [5].
In the continuous case, the uniform distribution is also called the rectangular

distribution because of the shape of its probability density function. The standard
uniform distribution is the continuous uniform distribution with the values of a
and b set to 0 and 1 respectively, so that the random variable can take values only
between 0 and 1.

Generally t is taken to be 1. δk is generated anew for each value of k. Correction
step η may have the same value as in correction rule (1).

5. Experimental results
Multimodal functions having local optima are often regarded as being di�cult

to optimize. The e�ectiveness of the method is demonstrated on a number of
eight multimodal test functions [2], [6]. One-dimensional functions have been cho-
sen for implementation, but the method can be easily extended to n-dimensional
functions.

The following eight benchmark functions are used for testing the proposed
model:

f1(x) = [0.002 +
25∑

i=1

1/(i + (x− ai)6)]−1,−1000 ≤ x ≤ 1000

f2(x) = 0.00025(x− 100)2 − cos(x− 100) + 1,−600 ≤ x ≤ 600
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f3(x) = −
5∑

i=1

ci[exp(−(x− ai)2/π)cos(π(x− ai)2)], 0 ≤ x ≤ 10

f4(x) = 20− 20exp(−0.2x + e− exp(cos(2xπ)/n)), 1 ≤ x ≤ 30
f5(x) = 10 + (x2 − 10cos(2xπ)), 1 ≤ x ≤ 5
f6(x) = 418.9828872724339− xsin(

√
|x|),−500 ≤ x ≤ 300

f7(x) = lnxsin(ex) + sin(3x), 0.1 ≤ x ≤ 4
f8(x) = exp(−2ln2((x− 0.1)/0.8)2)sin(5xπ)2, 0 ≤ x ≤ 3

Remarks:
(i) Coe�cients ai, i = 1, . . . , 25 in function f1 (Shekel's Foxholes function), are
components of the vector a=(-32 -16 0 16 32 -32 ... 0 16 32).
(ii) Coe�cients ci, i = 1, . . . , 5 in function f3 (Langerman's function), are compo-
nents of the vector c=(0.806 0.517 1.5 0.908 0.965), and coe�cients ai, i = 1, . . . , 5
are components of the vector a=(9.681 9.4 8.025 2.196 8.074).

Example:
Let us consider the function de�ned as:

f3(x) = −
5∑

i=1

ci[exp(−(x− ai)2/π)cos(π(x− ai)2)],

0 ≤ x ≤ 10.

Algorithm parameters are given in Table 1.

Table 1. PMGC parameters for test function f3.

Initial population size 300
Interaction (mating) radius 0.5
Mutation step size 0.001
Merging threshold 0.1
Number of epochs before stopping 10
Remarks The function has one global

optimum and seven local op-
tima.

Results obtained are given in Table 2.
Initial population is depicted in Figure 3. Populations obtained at several in-

termediate stages (epochs) are depicted in Figures 4 and 5. Final population is
depicted in Figure 6. Final population contains only problem optima. All optima
are correctly detected.
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Figure 3. Initial 300 members population.

Figure 4. PMGC population after 2 epochs. Population has 68 members.
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Figure 5. PMGC population after 5 epochs. Population has 25 members.

Figure 6. PMGC �nal population obtained after 35 epochs.
Population has 7 members representing optimal solutions. All
optimal solutions are correctly detected in this run.
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Table 2. PMGC results obtained for test function f3 with pa-
rameters in Table 1.

Number of detected optima 7
Number of epochs needed for convergence 35
Number of recombinations involved 232
Number of mutations involved 242

Table 3 summarizes the �nal results obtained after 100 runs of SGC and PMGC
for all considered benchmark functions. It can be seen that PMGC performs
better than SGC consistently for these functions. The proposed PMGC model
outperforms SGC as regards the number of epochs needed to �nd the local optimal
points. The results regard the average number of generations needed to locate
the optimal points in both SGC and PMGC approaches after 100 runs of both
algorithms. Also, the best value obtained in both approaches can be seen in Table
3.

Table 3. Results obtained after 100 runs of PMGC and SGC;
the average and the best number of epochs needed to �nd the
optimal points.

Test function Average
PMGC

Average
SGC

Best
PMGC

Best
SGC

f1 57 83 39 64
f2 53 66 32 35
f3 71 102 31 60
f4 55 99 35 50
f5 52 107 34 51
f6 53 95 37 52
f7 69 792 52 685
f8 52 53 35 38

Regarding the number of optimal points detected, PMGC and SGC have similar
results. For the considered test functions, in both approaches, in 98% of the cases
all the optimal points have been detected.

6. Conclusions
A new model of applying genetic operators consistently improves the results

obtained by the standard approach of Genetic Chromodynamics. The model is
based on the parallel action of two genetic operators: recombination followed by
small rate mutation and high rate mutation. The obtained o�spring will compete
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with the parents for survival. The two chromosomes with the higher quality will
survive if they belong to regions of di�erent optimal points. The Gaussian mu-
tation strategy is proposed for the mutation that follows recombination and the
Cauchy strategy is proposed for the mutation that acts parallel to recombination.
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